11 resultados para SIROLIMUS
em University of Queensland eSpace - Australia
Resumo:
The role of the therapeutic drug monitoring laboratory in support of immunosuppressant drug therapy is well established, and the introduction of sirolimus (SRL) is a new direction in this field. The lack of an immunoassay for several years has restricted the availability of SRL assay services. The recent availability of a CEDIA (R) SRL assay has the potential to improve this situation. The present communication has compared the CEDIA (R) SRL method with 2 established chromatographic methods, HPLC-UV and HPLC-MS/MS. The CEDIA (R) method, run on a Hitachi 917 analyzer, showed acceptable validation criteria with within-assay precision of 9.1% and 3.3%, and bias of 17.1% and 5.8%, at SRL concentrations of 5.0 mu g/L and 20 mu g/L, respectively. The corresponding between-run precision values were 11.5% and 3.3% and bias of 7.1% and 2.9% at 5.0 mu g/L and 20 mu g/L, respectively, The lower limit of quantification was found to be 3.0 mu g/L. A series of 96 EDTA whole-blood samples predominantly from renal transplant recipients were assayed by the 3 methods for comparison. It was found that the CEDIA (R) method showed a Deming regression line of CEDIA = 1.20 X HPLC-MS/MS - 0.07 (r = 0.934, SEE = 1.47), with a mean bias of 20.4%. Serial blood samples from 8 patients included in this evaluation showed that the CEDIA (R) method reflected the clinical fluctuations in the chromatographic methods, albeit with the variable bias noted. The CEDIA (R) method on the H917 analyzer is therefore a useful adjunct to SRL dosage individualization in renal transplant recipients.
Resumo:
Aim To explore relationships between sirolimus dosing, concentration and clinical outcomes. Methods Data were collected from 25 kidney transplant recipients (14 M/11 F), median 278 days after transplantation. Outcomes of interest were white blood cell (WBC) count, platelet (PLT) count, and haematocrit (HCT). A naive pooled data analysis was performed with outcomes dichotomized (Mann-Whitney U-tests). Results Several patients experienced at least one episode when WBC (n = 9), PLT (n = 12), or HCT (n = 21) fell below the lower limits of the normal range. WBC and HCT were significantly lower (P < 0.05) when sirolimus dose was greater than 10 mg day(-1), and sirolimus concentration greater than 12 mu g l(-1). No relationship was shown for PLT and dichotomized sirolimus dose or concentration. Conclusions Given this relationship between sirolimus concentration and effect, linked population pharmacokinetic-pharmacodynamic modelling using data from more renal transplant recipients should now be used to quantify the time course of these relationships to optimize dosing and minimize risk of these adverse outcomes.
Resumo:
The use of sirolimus as an alternative to calcineurin antagonists has enabled the continuation of immunosuppression in patients with renal impairment with preservation of kidney function. Sirolimus is generally well tolerated, with the main causes of cessation of therapy related to its effect on blood lipid profile as well as leukopenia and thrombocytopenia. We report a case of a debilitating ulcerating maculopapular rash necessitating cessation of the drug in a liver transplantation patient. A 56-year-old Caucasian liver transplantation patient presented with a diffuse, debilitating rash attributed to sirolimus use. This ultimately necessitated cessation of the immunosuppressant with subsequent resolution of her symptoms. From a review of the current literature, this is a highly unusual adverse reaction to sirolimus.
Resumo:
Therapeutic monitoring with dosage individualization of sirolimus drug therapy is standard clinical practice for organ transplant recipients. For several years sirolimus monitoring has been restricted as a result of lack of an immunoassay. The recent reintroduction of the microparticle enzyme immunoassay (MEIA (R)) for sirolimus on the IMx (R) analyser has the potential to address this situation. This Study, using patient samples, has compared the MEIA (R) sirolimus method with an established HPLC-tandem mass spectrometry method (HPLC-MS/MS). An established HPLC-UV assay was used for independent cross-validation. For quality control materials (5, 11, 22 mu g/L), the MEIA (R) showed acceptable validation criteria based on intra-and inter-run precision (CV) and accuracy (bias) of < 8% and < 13%, respectively. The lower limit of quantitation was found to be approximately 3 mu g/L. The performance of the immunoassay was compared with HPLC-MS/MS using EDTA whole-blood samples obtained from various types of organ transplant recipients (n = 116). The resultant Deming regression line was: MEIA = 1.3 x HPLC-MS/MS+ 1.3 (r = 0.967, s(y/x) = 1) with a mean bias of 49.2% +/- 23.1 % (range, -2.4% to 128%; P < 0.001). The reason for the large and variable bias was not explored in this study, but the sirolimus-metabolite cross-reactivity with the MEIA (R) antibody could be a substantive contributing factor. Whereas the MEIA (R) sirolimus method may be an adjunct to sirolimus dosage individualization in transplant recipients, users must consider the implications of the substantial and variable bias when interpreting results. In selected patients where difficult clinical issues arise, reference to a specific chromatographic method may be required.
Resumo:
Objective: It is usual that data collected from routine clinical care is sparse and unable to support the more complex pharmacokinetic (PK) models that may have been reported in previous rich data studies. Informative priors may be a pre-requisite for model development. The aim of this study was to estimate the population PK parameters of sirolimus using a fully Bayesian approach with informative priors. Methods: Informative priors including prior mean and precision of the prior mean were elicited from previous published studies using a meta-analytic technique. Precision of between-subject variability was determined by simulations from a Wishart distribution using MATLAB (version 6.5). Concentration-time data of sirolimus retrospectively collected from kidney transplant patients were analysed using WinBUGS (version 1.3). The candidate models were either one- or two-compartment with first order absorption and first order elimination. Model discrimination was based on computation of the posterior odds supporting the model. Results: A total of 315 concentration-time points were obtained from 25 patients. Most data were clustered at trough concentrations with range of 1.6 to 77 hours post-dose. Using informative priors, either a one- or two-compartment model could be used to describe the data. When a one-compartment model was applied, information was gained from the data for the value of apparent clearance (CL/F = 18.5 L/h), and apparent volume of distribution (V/F = 1406 L) but no information was gained about the absorption rate constant (ka). When a two-compartment model was fitted to the data, the data were informative about CL/F, apparent inter-compartmental clearance, and apparent volume of distribution of the peripheral compartment (13.2 L/h, 20.8 L/h, and 579 L, respectively). The posterior distribution of the volume distribution of central compartment and ka were the same as priors. The posterior odds for the two-compartment model was 8.1, indicating the data supported the two-compartment model. Conclusion: The use of informative priors supported the choice of a more complex and informative model that would otherwise have not been supported by the sparse data.
Resumo:
There is an urgent need to treat restenosis, a major complication of the treatment of arteries blocked by atherosclerotic plaque, using local delivery techniques. We observed that cross-linked fibrin (XLF) is deposited at the site of surgical injury of arteries. An antibody to XLF, conjugated to anti-restenotic agents, should deliver the drugs directly and only to the site of injury. An anti-XLF antibody (H93.7C.1D2/48; 1D2) was conjugated to heparin (using N-succinimidyl 3-(2-pyridyldithio)-propionate), low molecular weight heparin (LMWH) (adipic acid dihydrazide) and rapamycin (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide), and the conjugates purified and tested for activity before use in vivo. Rabbits had their right carotid arteries de-endothelialised and then given a bolus of 1D2-heparin, 1D2-LMWH or 1D2-rapamycin conjugate or controls of saline, heparin, LMWH, rapamycin or 1D2 (+/-heparin bolus) and sacrificed after 2 or 4 weeks (12 groups, n=6/group). Rabbits given any of the conjugates had minimal neointimal development in injured arteries, with up to 59% fewer neointimal cells than those given control drugs. Rabbits given 1D2-heparin or 1D2-LMWH had an increased or insignificant reduction in luminal area, with positive remodelling, while the medial and total arterial areas of rabbits given 1D2-rapamycin were not affected by injury. Arteries exposed to 1D2-heparin or 1D2-rapamycin had more endothelial cells than rabbits given control drugs. Thus, XLF-antibodies can site-deliver anti-restenotic agents to injured areas of the artery wall, where the conjugates can influence remodelling, re-endothelialisation and neointimal cell density, with reduced neointimal formation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Cyclosporin is an immunosuppressant drug with a narrow therapeutic window. Trough and 2-h post-dose blood samples are currently used for therapeutic drug monitoring in solid organ transplant recipients. The aim of the current study was to develop a rapid HPLC-tandem mass spectrometry (HPLC-MS) method for the measurement of cyclosporin in whole blood that was not only suitable for the clinical setting but also considered a reference method. Methods: Blood samples (50 mu L) were prepared by protein precipitation followed by C-18 solid-phase extraction while using d(12) cyclosporin as the internal standard. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface in positive ionization mode. Results: The assay was linear from 10 to 2000 mu g/L (r(2) > 0.996, n = 9). Inter-day,analytical recovery and imprecision using whole blood quality control samples at 10, 30, 400, 1500, and 2000 mu g/L were 94.9-103.5% and