20 resultados para SIB Semantic Information Broker OSGI Semantic Web
em University of Queensland eSpace - Australia
Resumo:
Refinement in software engineering allows a specification to be developed in stages, with design decisions taken at earlier stages constraining the design at later stages. Refinement in complex data models is difficult due to lack of a way of defining constraints, which can be progressively maintained over increasingly detailed refinements. Category theory provides a way of stating wide scale constraints. These constraints lead to a set of design guidelines, which maintain the wide scale constraints under increasing detail. Previous methods of refinement are essentially local, and the proposed method does not interfere very much with these local methods. The result is particularly applicable to semantic web applications, where ontologies provide systems of more or less abstract constraints on systems, which must be implemented and therefore refined by participating systems. With the approach of this paper, the concept of committing to an ontology carries much more force. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.
Resumo:
The role of gender differences in the consumption of goods and services is well established in many areas of consumer behaviour and computer use and yet there has been only limited research into such gender-based differences in the information search behaviour of Internet users. This paper reports the gender-based results of an exploratory study of consumer external information search of the web. The study investigated consumer characteristics, web search behaviour, and the post web search outcomes of purchase decision status and consumer judgements of search usefulness and satisfaction. Gender-based differences are reported in all three areas. Consideration of the results suggests they are issues which could inhibit the adoption of online purchasing by female web users. The implications of these results are discussed and a future research agenda proposed.
Resumo:
Client-side caching of spatial data is an important yet very much under investigated issue. Effective caching of vector spatial data has the potential to greatly improve the performance of spatial applications in the Web and wireless environments. In this paper, we study the problem of semantic spatial caching, focusing on effective organization of spatial data and spatial query trimming to take advantage of cached data. Semantic caching for spatial data is a much more complex problem than semantic caching for aspatial data. Several novel ideas are proposed in this paper for spatial applications. A number of typical spatial application scenarios are used to generate spatial query sequences. An extensive experimental performance study is conducted based on these scenarios using real spatial data. We demonstrate a significant performance improvement using our ideas.
Resumo:
Conflicting findings regarding the ability of people with schizophrenia to maintain and update semantic contexts have been due, arguably, to vagaries within the experimental design employed (e.g. whether strongly or remotely associated prime-target pairs have been used, what delay between the prime and the target was employed, and what proportion of related prime-target pairs appeared) or to characteristics of the participant cohort (e.g. medication status, chronicity of illness). The aim of the present study was to examine how people with schizophrenia maintain and update contextual information over an extended temporal window by using multiple primes that were either remotely associated or unrelated to the target. Fourteen participants with schizophrenia and 12 healthy matched controls were compared across two stimulus onset asynchronies (SOAs) (short and long) and two relatedness proportions (RP) (high and low) in a crossed design. Analysis of variance statistics revealed significant two- and three-way interactions between Group and SOA, Group and Condition, SOA and RP, and Group, SOA and RP. The participants with schizophrenia showed evidence of enhanced remote priming at the short SOA and low RP, combined with a reduction in the time course over which context could be maintained. There was some sensitivity to biasing contextual information at the short SOA, although the mechanism over which context served to update information appeared to be different from that in the controls. The participants with schizophrenia showed marked performance decrements at the long SOA (both low and high RP). Indices of remote priming at the short (but not the long) SOA correlated with both clinical ratings of thought disorder and with increasing length of illness. The results support and extend the hypothesis that schizophrenia is associated with concurrent increases in tonic dopamine activity and decreases in phasic dopamine activity. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Research has suggested that the integrity of semantic processing may be compromised in Parkinson's disease (PD), which may account for difficulties in complex sentence comprehension. In order to investigate the time course and integrity of semantic activation in PD, 20 patients with PD and 23 healthy controls performed a lexical decision task based on the multi-priming paradigm. Semantic priming effects were measured across stimulus onset asynchronies of 250 ms, 600 ms, and 1200 ms. Further, PD participants performed an auditory comprehension task. The results revealed significantly different patterns of semantic priming for the PD group at the 250-ms and 1200-ms SOAs. In addition, a delayed time course of semantic activation was evident for PD patients with poor comprehension of complex sentences. These results provide further support to suggest that both automatic and controlled aspects of semantic activation may be compromised in PD. Furthermore, the results also suggest that some sentence comprehension deficits in PD may be related to a reduction in information processing speed.
Resumo:
In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.
Resumo:
The Leximancer system is a relatively new method for transforming lexical co-occurrence information from natural language into semantic patterns in an unsupervised manner. It employs two stages of co-occurrence information extraction-semantic and relational-using a different algorithm for each stage. The algorithms used are statistical, but they employ nonlinear dynamics and machine learning. This article is an attempt to validate the output of Leximancer, using a set of evaluation criteria taken from content analysis that are appropriate for knowledge discovery tasks.