4 resultados para SI0.5GE0.5 ALLOY
em University of Queensland eSpace - Australia
Resumo:
Different as-cast microstructures of an AlSi7Mg alloy were produced by controlling the solidification conditions. The as-cast grain size ranged from 1.4 mm to 160 mum and the morphology varied from dendritic to rosette-like to globular. The as-cast materials were then partially remelted and isothermally held at 580degreesC for microstructure evolution. The final microstructure depended on the initial as-cast microstructure and the isothermal holding time. After partial remelting and isothermal holding, coarse-grained dendritic structures were not able to evolve to a globular structure, while structures with medium sized dendritic grains evolved to a globular structure with a relatively large particle size after a long isothermal holding time. Fine-grained structures evolved to well-rounded globular grains within times ranging front 10 min to 5 min as the dendritic nature of the starting structure diminished. An empirical equation has been established to describe the relationship between the evolved microstructure and the as-cast microstructure. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Multi-layer hydrogen storage thin films with Mg and MmNi(3.5)(CoAlMn)(1.5) (here Mm denotes La-rich mischmetal) as alternative layers were prepared by direct current magnetron sputtering. Transmission electron microscopy investigation shows that the microstructure of the MmNi(3.5)(CoAlMn)(1.5) and Mg layers are significantly different although their deposition conditions are the same. The MmNi(3.5)(CoAlMn)(1.5) layer is composed of two regions: one is an amorphous region approximately 4 nm thick at the bottom of the layer and the other is a nanocrystalline region on top of the amorphous region. The Mg layer is also composed of two regions: one is a randomly orientated nanocrystalline region 50 nm thick at the bottom of the layer and the other is a columnar crystallite region on top of the nanocrystalline region. These Mg columnar crystallites have their [001] directions parallel to the growth direction and the average lateral size of these columnar crystallites is about 100 nm. A growth mechanism of the multi-layer thin films is discussed based on the experiment results. Wiley-Liss, Inc.
Resumo:
The effect of manganese on gain refinement of a commercial AZ31 alloy has been investigated using an Al-60%Mn master alloy splatter as an alloying additive at 730 degrees C in aluminium titanite crucibles. It is shown that grain refinement by manganese is readily achievable in AZ31. Electron microprobe analyses reveal that prior to the addition of extra manganese the majority of the intermetallic particles found in AZ31 are of the AL(8)Mn(5) type. However, after the addition of extra manganese in the range from 0.1% to 0.8%, the predominant group of intermetallic particles changes to the metastable AlMn type. This leads to a hypothesis that the metastable AlMn intermetallic particles are more effective than Al8Mn5 as nucleation sites for magnesium grains. The hypothesis is supported by the observation that a long period of holding at 730 degrees C leads to an increase in grain size, due probably to the transformation of the metastable AlMn to the stable Al8Mn5. The hypothesis has also been used to understand the mechanism of grain refinement by superheating.
Resumo:
The orientation relationship (OR) between the beta(Zn) phase and the alpha(Al) phase and the corresponding habit planes in a Zn-Al eutectoid alloy were accurately determined using convergent beam Kikuchi line diffraction patterns. In addition to the previously reported OR. [11 (2) over bar0](beta)parallel to[110](alpha), (0002)(beta)parallel to ((1) over bar 11)alpha, two new ORs were observed. They are: [11 (2) over bar0](beta)parallel to [110], ((1) over bar 101)(beta) 0.82 degrees from (002)(alpha) and [(1) over bar 100](beta)parallel to[112](alpha), (0002)(beta) 4.5 degrees from (111)(alpha). These ORs can be explained and understood using the recently developed edge-to-edge matching model. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.