4 resultados para SHORT GRAVITY WAVES

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the Western-Pacific region spread-F has been found to occur with delays after geomagnetic activity (GA) ranging from 5 to 10 days as station groups are considered from low midlatitudes to equatorial regions. The statistical (superposed-epoch) analyses also indicate that at the equator the spread-F, and therefore associated medium-scale traveling ionospheric disturbances (MS-TIDs) occur with additional delays around 16, 22 and 28 days representing a 6-day modulation of the delay period. These results are compared with similar delays, including the modulation, for D-region enhanced hydroxyl emission (Shefov, 1969). It is proposed that this similarity may be explained by MS-TIDs influencing both the F and D regions as they travel. Long delays of over 20 days are also found near the equator for airglow-measured MS-TIDs (Sobral et al., 1997). These are recorded infrequently and have equatorward motions, while normally eastward motions are measured at the equator. Also in midlatitudes D-region absorption events have been shown (statistically) to have similar long delays after GA. It is suggested that atmospheric gravity waves and associated MS-TIDs may be generated by some of the precipitations responsible for the absorption. The recording of the delayed spread-F events depends on the GA being well below the average levels around sunset on the nights of recording. This implies that lower upper-atmosphere neutral particle densities are necessary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents new laboratory data on the generation of long waves by the shoaling and breaking of transient-focused short-wave groups. Direct offshore radiation of long waves from the breakpoint is shown experimentally for the first time. High spatial resolution enables identification of the relationship between the spatial gradients of the short-wave envelope and the long-wave surface. This relationship is consistent with radiation stress theory even well inside the surf zone and appears as a result of the strong nonlinear forcing associated with the transient group. In shallow water, the change in depth across the group leads to asymmetry in the forcing which generates significant dynamic setup in front of the group during shoaling. Strong amplification of the incident dynamic setup occurs after short-wave breaking. The data show the radiation of a transient long wave dominated by a pulse of positive elevation, preceded and followed by weaker trailing waves with negative elevation. The instantaneous cross-shore structure of the long wave shows the mechanics of the reflection process and the formation of a transient node in the inner surf zone. The wave run-up and relative amplitude of the radiated and incident long waves suggests significant modification of the incident bound wave in the inner surf zone and, the dominance of long waves generated by the breaking process. It is proposed that these conditions occur when the primary short waves and bound wave are not shallow water waves at the breakpoint. A simple criterion is given to determine these conditions, which generally occur for the important case of storm waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water level and current measurements from two virtually enclosed South Pacific atolls, Manihiki and Rakahanga, support a new lagoon flushing mechanism which is driven by waves and modulated by the ocean tide for virtually enclosed atolls. This is evident because the lagoon water level remains above the ocean at all tidal phases (i.e., ruling out tidal flushing) and because the average lagoon water level rises significantly during periods with large waves. Hence, we develop a model by which the lagoons are flushed by waves pumping of ocean water into the lagoon and gravity draining water from the lagoon over the reef rim. That is, the waves on the exposed side push water into the lagoon during most of the tidal cycle while water leaves the lagoon on the protected side for most of the tidal cycle. This wave-driven through flow flushing is shown to be more efficient than alternating tidal flushing with respect to water renewal. Improved water quality should therefore be sought through enhancement of the natural wave pumping rather than by blasting deep channels which would change the system to an alternating tide-driven one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference between the two resonances. We subsequently demonstrate how the phase and polarization of the rf radiation directly control the phase of the matter wave interference and provide a semiclassical interpretation of the results.