4 resultados para SEMIGROUPS
em University of Queensland eSpace - Australia
Resumo:
Let Q be a stable and conservative Q-matrix over a countable state space S consisting of an irreducible class C and a single absorbing state 0 that is accessible from C. Suppose that Q admits a finite mu-subinvariant measure in on C. We derive necessary and sufficient conditions for there to exist a Q-process for which m is mu-invariant on C, as well as a necessary condition for the uniqueness of such a process.
Resumo:
We describe a new technique for finding efficient presentations for finite groups. We use it to answer three previously unresolved questions about the efficiency of group and semigroup presentations.
Resumo:
We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.