28 resultados para SEEDLING ESTABLISHMENT
em University of Queensland eSpace - Australia
Resumo:
Prevalence of low temperature at sowing results in poor rice seed germination, seedling establishment and vigour in several temperate rice growing countries around the world. Rice seed of four cultivars (Sasanishiki, H433, HSC-55 and Doongara) was soaked in various combinations of gibberellic acid(3) (GA(3)) and glycinebetaine (GB) in petri dishes placed in a low temperature glasshouse (18/13 degrees C; day/night) for 2 days. After the 2 days soak, 10 treated seed were transferred into plastic pots filled with soil and seedlings were grown in the same glasshouse, where seed was treated. Seedling emergence was least affected by low temperature in cold tolerant cultivar, HSC-55, while other three cultivars showed reduced seedling emergence. However, seedling emergence increased significantly in some cultivars in response to seed treatment with GA(3) and/or GB. Seedlings emerged faster even in the cold tolerant cultivar, HSC-55, as measured by reduced mean emergence time (MET), in response to GB. Seedling height and seedling dry matter also increased in response to both GA(3) and GB. Combined treatment of both GA(3) and GB was more beneficial in increasing seedling emergence and vigour than the treatment with only GA3 or GB. We demonstrated significant genotypic differences for seedling emergence and vigour and not all cultivars responded to the treatment with GA(3) and GB, under low temperature.
Resumo:
Reforestation in tropical areas is usually attempted by planting seedlings but, direct seeding (the artificial addition or sowing of seed) may be an alternative way of accelerating forest recovery and successional processes. This study investigated the effects of various sowing treatments (designed to create different microsite conditions for seed germination) and seed sizes on the early establishment and growth of directly sown rainforest tree species in a variety of experimental plots at three sites in the wet tropical region of north-cast Queensland, Australia. The different sowing treatments were found to have significant effects on seedling establishment. Broadcast sowing treatments were ineffective and resulted in very poor seedling establishment and high seed wastage. Higher establishment rates occurred when seeds were buried. Seed size was found to be an important factor affecting establishment in relation to micro-site condition. In general, larger seeded species had higher establishment rates at all three sites than species of small and intermediate seed size, but only in sowing treatments where seeds were buried. Overall these results suggest that direct sowing of seed can be used as a too] to accelerate recolonisation of certain rainforest tree species on degraded tropical lands, but initial success will be dependent on the choice of sowing method and its suitability for the seed types selected. The results also indicate that the recruitment of naturally dispersed tree species at degraded sites is likely to be severely limited by the availability of suitable microsites for seed germination. Consequently the natural recovery of degraded sites via seed rain can be expected to be slow and unpredictable, particularly in areas where soil compaction has occurred. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
1. Management decisions regarding invasive plants often have to be made quickly and in the face of fragmentary knowledge of their population dynamics. However, recommendations are commonly made on the basis of only a restricted set of parameters. Without addressing uncertainty and variability in model parameters we risk ineffective management, resulting in wasted resources and an escalating problem if early chances to control spread are missed. 2. Using available data for Pinus nigra in ungrazed and grazed grassland and shrubland in New Zealand, we parameterized a stage-structured spread model to calculate invasion wave speed, population growth rate and their sensitivities and elasticities to population parameters. Uncertainty distributions of parameters were used with the model to generate confidence intervals (CI) about the model predictions. 3. Ungrazed grassland environments were most vulnerable to invasion and the highest elasticities and sensitivities of invasion speed were to long-distance dispersal parameters. However, there was overlap between the elasticity and sensitivity CI on juvenile survival, seedling establishment and long-distance dispersal parameters, indicating overlap in their effects on invasion speed. 4. While elasticity of invasion speed to long-distance dispersal was highest in shrubland environments, there was overlap with the CI of elasticity to juvenile survival. In shrubland invasion speed was most sensitive to the probability of establishment, especially when establishment was low. In the grazed environment elasticity and sensitivity of invasion speed to the severity of grazing were consistently highest. Management recommendations based on elasticities and sensitivities depend on the vulnerability of the habitat. 5. Synthesis and applications. Despite considerable uncertainty in demography and dispersal, robust management recommendations emerged from the model. Proportional or absolute reductions in long-distance dispersal, juvenile survival and seedling establishment parameters have the potential to reduce wave speed substantially. Plantations of wind-dispersed invasive conifers should not be sited on exposed sites vulnerable to long-distance dispersal events, and trees in these sites should be removed. Invasion speed can also be reduced by removing seedlings, establishing competitive shrubs and grazing. Incorporating uncertainty into the modelling process increases our confidence in the wide applicability of the management strategies recommended here.
Resumo:
A novel, untransformed koala cell line (KC-1) was established by culturing koala conjunctival tissue in growth medium, which has permitted the study of the cell biology of this unique system. After the establishment of the KC-1 cell line, the cells were characterized by light microscopy, doubling time, and Western blot analysis. Light microscopy revealed that the cells have an epithelial morphology. Doubling times were significantly different (P < 0.015) depending on fetal calf serum (FCS) concentration (16.5 h in 10% FCS and 26.5 h in 2% FCS). Cells constricted while in suspension but were shown to attach to the coverslip (or flask) and flatten rapidly, less than 1 h after seeding. To confirm the epithelial nature of the cells, protein was extracted and Western blot analysis was performed. Subsequent probing with primary and secondary antibodies (monoclonal anticytokeratin clone C-11 IgG1 and anti-mouse IgG) revealed two bands at 45 and 52 kDa (compared against a protein molecular weight marker) that correspond to primary type I keratin and major type II keratin, respectively, expressed in simple epithelial cells. The koala cell line was adapted to grow continuously in Dulbecco modified Eagle medium containing 10% FCS for at least 30 passages. This unique cell line is an ideal toot for further investigation on koala cell biology and cytogenetics and for exploration of the pathophysiological mechanism of eye infections caused by different pathogens in koalas.
Resumo:
We conducted a demographic and genetic study to investigate the effects of fragmentation due to the establishment of an exotic softwood plantation on populations of a small marsupial carnivore, the agile antechinus (Antechinus agilis), and the factors influencing the persistence of those populations in the fragmented habitat. The first aspect of the study was a descriptive analysis of patch occupancy and population size, in which we found a patch occupancy rate of 70% among 23 sites in the fragmented habitat compared to 100% among 48 sites with the same habitat characteristics in unfragmented habitat. Mark-recapture analyses yielded most-likely population size estimates of between 3 and 85 among the 16 occupied patches in the fragmented habitat. Hierarchical partitioning and model selection were used to identify geographic and habitat-related characteristics that influence patch occupancy and population size. Patch occupancy was primarily influenced by geographic isolation and habitat quality (vegetation basal area). The variance in population size among occupied sites was influenced primarily by forest type (dominant Eucalyptus species) and, to a lesser extent, by patch area and topographic context (gully sites had larger populations). A comparison of the sex ratios between the samples from the two habitat contexts revealed a significant deficiency of males in the fragmented habitat. We hypothesise that this is due to male-biased dispersal in an environment with increased dispersal-associated mortality. The population size and sex ratio data were incorporated into a simulation study to estimate the proportion of genetic diversity that would have been lost over the known timescale since fragmentation if the patch populations had been totally isolated. The observed difference in genetic diversity (gene diversity and allelic richness at microsatellite and mitochondrial markers) between 16 fragmented and 12 unfragmented sites was extremely low and inconsistent with the isolation of the patch populations. Our results show that although the remnant habitat patches comprise approximately 2% of the study area, they can support non-isolated populations. However, the distribution of agile antechinus populations in the fragmented system is dependent on habitat quality and patch connectivity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Background: It has been demonstrated that embryonic kidneys (metanephroi) xenotransplanted into the omentum of adult recipients continue to develop and display immune protection due to their more nave immune presentation. To date, this has been achieved using rat, pig and human metanephroi, with unilateral nephrectomy (UNX) of recipient rats a requisite of renal development. The aim of this study was to adapt this approach for use in mice and examine the parameters affecting successful onward development in this species. Methods: Metanephroi at embryonic age (E) 13.5 were transplanted either onto the body wall, abdominal fat pads or omentum of recipient isogenic C57/Bl6 mice using either sutures or polyglycolic acid mesh. Having established greatest success with polyglycolic acid mesh on the body wall, E12.5 and 15.5 days metanephroi from C57/Bl6 mice were then transplanted onto the body wall of control (non-pregnant non-UNX), UNX or 12.5 days post-coitum pregnant isogenic recipients. After 7 days, implanted tissue was harvested and examined using histology and immunohistochemistry for markers of renal maturation. The mean number of S-shaped bodies and glomeruli per section were recorded and statistically analysed for significant differences between all recipient groups and untransplanted metanephroi. The degree of development was scored qualitatively. Results: Transplanted E12.5 metanephroi developed S-shaped bodies and glomeruli in all recipient groups, although there were statistically higher numbers of S-shaped bodies in UNX (n = 2) and pregnant recipients (n = 9) than in control recipients (n = 4). Continued development, as indicated by mature vascularized glomeruli, was only observed in those E15.5 metanephroi transplanted into pregnant recipients (n = 11) with a 15.5-fold increase in S-shaped bodies and 4-fold increase in glomeruli compared with control transplants (n = 12). Conclusions: We have successfully established metanephros transplantation in mice and demonstrated enhancement of onward development of E12.5 metanephroi in response to both pregnancy and UNX. Using E15.5 metanephroi, continued development only occurred in pregnant recipients, implying pregnancy provides an environment conducive to continued organogenesis. This murine assay, when coupled with transgenically-tagged strains of mice, will allow the investigation of the relative contribution of donor and recipient cells to this process. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 mu g ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM 1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacl(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 mu m in diameter, could be seen to develop in each chamber. A 2,4-D degrading transconjugant strain was isolated from the flow cell system belonging to the genus Burkholderia.
Resumo:
High salt levels in mine spoils have been identified as one of the major chemical limitations to plant establishment after coal mining in central Queensland. Soil solution extracts from spoils indicated that EC levels of up to 26 dS/m could be encountered. Glasshouse trials examined the emergence and growth of Eucalyptus citriodora, Eucalyptus camaldulensis and Eucalyptus populnea provenances and Acacia salicina subjected to such EC levels. Relatively low levels of salt (100 mM NaCl, or 11 dS/m) with respect to the levels encountered on mine spoils, were enough to substantially reduce the rate and percentage emergence of all eucalypt provenances. A. salicina was found to be superior to the eucalypts in its ability to emerge and survive under saline conditions. It was the only species to have seedlings emerge and survive at 200 mM NaCl (20 dS/m), and the effect of salt on decreasing seedling dry weight was less pronounced for A. salicina than for any of the eucalypts. Established plants survived the range of salt treatments far better than emerging seedlings, with survival of established plants being reduced only at 300 and 400 mM NaCl (28 and 36 dS/m, respectively). A. salicina performed significantly better at 300 and 400 mM NaCl than most of the eucalypts studied. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The acclimatization and ex vitro establishment of tissue cultured coconut plantlets regenerated either from zygotic or somatic embryos could result to serious losses. Although high germination rates can be achieved in vitro, the survival of zygotic embryo derived plantlets in soil is very low (0-30%). Hence, treatments that could promote development of good quality seedlings having well-developed shoot and root is needed to increase seedling survival ex vitro. The effect of physical, chemical and light quality treatments on germination and growth of coconut embryos and tissue-cultured seedlings respectively, was investigated. The germination of coconut embryos was promoted when placed in a liquid Euwens (Y3) medium and incubated using a roller drum. Gibberellic acid (GA3) significantly affected growth of seedlings as it promoted shoot elongation, shoot and root expansion, and fresh and dry weight increase. However, GA3 did not significantly affect germination. In addition, the blue, red and yellow light significantly affected growth of seedlings as it promoted leaf and shoot elongation, fresh and dry weight increase, and root and leaf production. These conditions could be used to improve the growth and survival ex vitro of tissue cultured coconuts.