3 resultados para SCL
em University of Queensland eSpace - Australia
Resumo:
The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.
Resumo:
The present study evaluated the effectiveness of attendance at a clinically based, short-term, in-patient group CBT program largely based on Monti, Abrams, Kadden, and Cooney(1) to treat problem drinking. Participants were 37 males and 34 females diagnosed with alcohol dependence. Patients attended 42 CBT sessions over three weeks, with each session being one hour in duration. Measures included the Khavari Alcohol Test (KAT), the Short Alcohol Dependence Data Questionnaire (SADD), the Beck Anxiety Index (BAI), the Symptom Checklist-90-Revised (SCL-90), a General Self-Efficacy scale (GSE), and the Drinking Expectancy Profile (DEP). Group attendance rates were monitored daily. Two structured phone calls were conducted at one month and three months post-discharge. Results showed that attendance rates at CBT group sessions were not associated with improvements found at the end of therapy or in drinking behaviors at three-month follow-up. Full support could not be found for the effectiveness of group CBT and cognitive models of problem drinking.
Resumo:
The olive ridley is the most abundant seaturtle species in the world but little is known of the demography of this species. We used skeletochronological data on humerus diameter growth changes to estimate the age of North Pacific olive ridley seaturtles caught incidentally by pelagic longline fisheries operating near Hawaii and from dead turtles washed ashore on the main Hawaiian Islands. Two age estimation methods [ranking, correction factor (CF)] were used and yielded age estimates ranging from 5 to 38 and 7 to 24 years, respectively. Rank age-estimates are highly correlated (r = 0.93) with straight carapace length (SCL), CF age estimates are not (r = 0.62). We consider the CF age-estimates as biologically more plausible because of the disassociation of age and size. Using the CF age-estimates, we then estimate the median age at sexual maturity to be around 13 years old (mean carapace size c. 60 cm SCL) and found that somatic growth was negligible by 15 years of age. The expected age-specific growth rate function derived using numerical differentiation suggests at least one juvenile growth spurt at about 10–12 years of age when maximum age-specific growth rates, c. 5 cm SCL year−1, are apparent.