7 resultados para Ruminal incubation
em University of Queensland eSpace - Australia
Resumo:
Acacia angustissima has been proposed as a protein supplement in countries where low quality forages predominate. A number of non-protein amino acids have been identified in the leaves of A. angustissima and these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) has been shown to be the major amino acid in the leaves of A. angustissima. The current study aimed to identify micro-organisms from the rumen environment capable of degrading ADAB by using a defined rumen-simulating media with an amino acid extract from A. angustissima. A mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, however no isolates were able to degrade ADAB in pure culture. This enrichment culture was also able to degrade the non-protein amino acids diaminobutyric acid (DABA) and diaminopropionic acid (DAPA) which have structural similarities to ADAB. Two isolates were obtained which could degrade DAPA. One isolate is a novel Grain-positive rod (strain LPLR3) which belongs to the Firmicutes and is not closely related to any previously isolated bacterium. The other isolate is strain LPSR1 which belongs to the Gammaproteobacteria and is closely related (99.93% similar) to Klebsiella pneumoniae subsp. ozaenae. The studies demonstrate that the rumen is a potential rich source of undiscovered micro-organisms which have novel capacities to degrade plant secondary compounds. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Incubation temperature influences hatchling phenotypes such as sex, size, shape, color, behavior, and locomotor performance in many reptiles, and there is growing concern that global warming might adversely affect reptile populations by altering frequencies of hatchling phenotypes. Here I overview a recent theoretical model used to predict hatchling sex of reptiles with temperature-dependent sex determination. This model predicts that sex ratios will be fairly robust to moderate global warming as long as eggs experience substantial daily cyclic fluctuations in incubation temperatures so that embryos are exposed to temperatures that inhibit embryonic development for part of the day. I also review studies that examine the influence of incubation temperature on posthatch locomotion performance and growth because these are the traits that are likely to have the greatest effect on hatchling fitness. The majority of these studies used artificial constant-temperature incubation, but some have addressed fluctuating incubation temperature regimes. Although the number of studies is small, it appears that fluctuating temperatures may enhance hatchling locomotor performance. This finding should not be surprising, given that the majority of natural reptile nests are relatively shallow and therefore experience daily fluctuations in incubation temperature.
Resumo:
In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles (Chelonia mydas). In the first year, hatchlings from eggs incubated at 26 degrees C were larger in size than hatchlings from 28 and 30 degrees C, whilst in the second year hatchlings from 25.5 degrees C were similar in size to hatchings from 30 degrees C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28 degrees C, hatchlings from eggs incubated at 25.5 and 26 degrees C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30 degrees C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.