5 resultados para Root of Kusnezoffii Monkshood

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new steroidal saponin, shatavarin V, (3-O-{[alpha-L-rhamnopyranosy](1-2)][beta-D-glucopyranosyl(1 -> 4)]-beta-D-glucopyranosyl}-(25S)-5 beta-spirostan-3 beta-ol), was isolated from the roots of Asparagus racemosus by RP-HPLC, and its structure determined by 1D and 2D NMR studies. This data permits clarification of the structures reported for several known saponins: asparinins A and B; asparosides A and B; curillin H; curillosides G and H and shavatarins I and IV. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human urotensin-II (hU-II) is the most potent endogenous cardiostimulant identified to date. We therefore determined whether hU-II has a possible pathological role by investigating its levels in patients with congestive heart failure (CHF). Blood samples were obtained from the aortic root, femoral artery, femoral vein, and pulmonary artery from CHF patients undergoing cardiac catheterization and the aortic root from patients undergoing investigative angiography for chest pain who were not in heart failure. Immunoreactive hU-II (hU-II-ir) levels were determined with radioimmunoassay. hU-II-ir was elevated in the aortic root of CHF patients (230.9 +/- 68.7 pg/ml, n = 21; P < 0.001) vs. patients with nonfailing hearts (22.7 +/- 6.1 pg/ml, n = 18). This increase was attributed to cardiopulmonary production of hU-II-ir because levels were lower in the pulmonary artery (38.2 +/- 6.1 pg/ml, n = 21; P < 0.001) than in the aortic root. hU-II-ir was elevated in the aortic root of CHF patients with nonischemic cardiomyopathy (142.1 +/- 51.5 pg/ml, n = 10; P < 0.05) vs. patients with nonfailing hearts without coronary artery disease (27.3 +/- 12.4 pg/ml, n = 7) and CHF patients with ischemic cardiomyopathy (311.6 +/- 120.4 pg/ml, n = 11; P < 0.001) vs. patients with nonfailing hearts and coronary artery disease (19.8 +/- 6.6 pg/ml, n = 11). hU-II-ir was significantly higher in the aortic root than in the pulmonary artery and femoral vein, with a nonsignificant trend for higher levels in the aortic root than in the femoral artery. The findings indicated that hU-II-ir is elevated in the aortic root of CHF patients and that hU-II-ir is cleared at least in part from the microcirculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The software implementation of the emergency shutdown feature in a major radiotherapy system was analyzed, using a directed form of code review based on module dependences. Dependences between modules are labelled by particular assumptions; this allows one to trace through the code, and identify those fragments responsible for critical features. An `assumption tree' is constructed in parallel, showing the assumptions which each module makes about others. The root of the assumption tree is the critical feature of interest, and its leaves represent assumptions which, if not valid, might cause the critical feature to fail. The analysis revealed some unexpected assumptions that motivated improvements to the code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we apply the canonical decomposition of two-qubit unitaries to find pulse schemes to control the proposed Kane quantum computer. We explicitly find pulse sequences for the controlled-NOT, swap, square root of swap, and controlled Z rotations. We analyze the speed and fidelity of these gates, both of which compare favorably to existing schemes. The pulse sequences presented in this paper are theoretically faster, with higher fidelity, and simpler. Any two-qubit gate may be easily found and implemented using similar pulse sequences. Numerical simulation is used to verify the accuracy of each pulse scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bang-bang phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed a process can make a working flip-flop. For these reasons designers are employing them in the design of very high speed Clock Data Recovery (CDR) architectures. The major drawback of this class of PLL is the inherent jitter due to quantized phase and frequency corrections. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. This paper presents a novel PLL design that dynamically scales its gain in order to achieve fast lock times while improving fitter performance in lock. Under certain circumstances the design also demonstrates improved capture range. This paper also analyses the behaviour of a bang-bang type PLL when far from lock, and demonstrates that the pull-in range is proportional to the square root of the PLL loop gain.