90 resultados para Root Temperature
em University of Queensland eSpace - Australia
Resumo:
Low temperatures impose restrictions on rice (Oryza sativa L.) production at high latitudes. This study is related to low temperature damage that can arise mid-season during the panicle development phase. The objective of this study was to determine whether low temperature experienced by the root, panicle, or foliage is responsible for increased spikelet sterility. In temperature-controlled glasshouse experiments, water depth, and water and air temperatures, were changed independently to investigate the effects of low temperature in the root, panicle, and foliage during microspore development on spikelet sterility. The total number of pollen and number of engorged pollen grains per anther, and the number of intercepted and germinated pollen grains per stigma, were measured. Spikelet sterility was then analysed in relation to the total number of pollen grains per spikelet and the efficiency with which these pollen grains became engorged, were intercepted by the stigma, germinated, and were involved in fertilisation. There was a significant combined effect of average minimum panicle and root temperatures on spikelet sterility that accounted for 86% of the variation in spikelet sterility. Total number of pollen grains per anther was reduced by low panicle temperature, but not by low root temperature. Whereas engorgement efficiency ( the percentage of pollen grains that were engorged) was determined by both root and panicle temperature, germination efficiency (the percentage of germinated pollen grains relative to the number of engorged pollen grains intercepted by the stigma) was determined only by root temperature. Interception efficiency (i.e. percentage of engorged pollen grains intercepted by the stigma), however, was not affected by either root or panicle temperature. Engorgement efficiency was the dominant factor explaining the variation in spikelet sterility. It is concluded that both panicle and root temperature affect spikelet sterility in rice when the plant encounters low temperatures during the microspore development stage.
Resumo:
Potted lychee trees (cv. Tai so) with mature vegetative flushes were grown under three day/night temperature regimes known to induce floral (18/13degreesC), intermediate (23/18degreesC) and vegetative (28/23degreesC) shoot structures. Heating roots respective to shoots accelerated bud-break and shoot emergence, but reduced the level of floral initiation in emergent shoots. At 18/13degreesC, root temperatures of 20 and 25degreesC decreased the period of shoot dormancy from 9 weeks to 5 and 3 weeks, respectively. A root temperature of 20degreesC also increased the proportion of both leafy and stunted panicles to normal leafless panicles, and reduced the number of axillary panicles accompanying each terminal particle. A root temperature of 25degreesC produced only vegetative shoots. At 23/18degreesC, heating roots increased the proportion of vegetative shoots and partially emerged buds to leafy and stunted particles as well as accelerating bud-break. Cooling of roots in relation to the shoot resulted in non-emergence of buds at both 28/23 and 23/18degreesC. Bud-break did not occur until root cooling was terminated and root temperature returned to that of the shoot. At 23/18degreesC, subsequent emergent shoots had a greater proportion of leafy panicles relative to control trees. At 28/23degreesC, all emergent shoots remained vegetative. Lychee floral initiation is influenced by both root and shoot temperature. Root temperature has a direct effect on the length of the shoot dormancy period, with high temperatures reducing this period and the subsequent level of floral initiation. However, an extended period of dormancy in itself is not sufficient for floral initiation, with low shoot temperatures also a necessary prerequisite. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT, Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (g(s)) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (Psi(shoot)), and g(s); while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, g(s) measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher g(s) than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling g(s) of aeroponically grown Capsicum plants at different RZTs are discussed.
Resumo:
A 2-year study was carried out on established trees at two sites in southeastern Queensland, Australia, to identify environmental factors that influenced rooting of Backhousia citriodora from cuttings. Complex interactions of rainfall events above 20 mm from the preceding month and mean maximum temperature on stock plants resulted in a correlation with rooting success of r = 0.81 and 0.74 for sites at The University Of Queensland, Gatton Campus, and Cedar Glen, respectively. A more detailed investigation under controlled environmental conditions showed that maintaining stock plants at temperatures between 10 and 30degreesC had no direct effect on rooting capacity. However, temperature was correlated with growth, which may have an indirect effect on root formation. In spring floral initiation was found to only delay rooting and had no effect on the final rooting percentage. A series of seasonal experiments demonstrated that application of the auxins indole-3-acetic acid, indole-3-butyric acid and napthaleneacetic acid over a range of concentrations (1000-8000 mug/ml) did not significantly increase rooting compared to the control and there is no practical advantage in applying auxins. Seasonal results and the temperature experiment also suggest that under a glasshouse environment with higher temperatures in winter and an adequate supply of water, B. citriodora cuttings can be successfully rooted over the whole year. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Oilseed rape (Brassica napus) is sensitive to low boron (B) supply, and its growth response to B may be influenced by soil temperature. To test the relationship between B and temperature, oilseed rape (cv. Hyola 42) seedlings were grown at 10 degrees C (low) root zone temperature (RZT) with B supply from deficient to adequate B levels until growth of low B plants just began to slow down. Half of the pots were then transferred to 20 degrees C (warm) RZT for 11 days before they were moved back to 10 degrees C RZT for the final 4 days. Both plant dry mass and B uptake increased after plants were exposed to warm RZT. However, plant B deficiency was exacerbated by warm RZT in low B plants because of increased relative growth rate and shoot-root ratio without a commensurate increase in B uptake rate. It is concluded that RZT above the critical threshold for chilling injury in oilseed rape can nevertheless affect the incidence of B deficiency by altering shoot-root ratio and hence the balance between shoot B demand and B uptake.
Resumo:
Phytophthora-resistant lucerne cultivars do not always perform well under conditions of high disease pressure in the field. To determine whether resistance expression remains stable under different infection intensities, tetraploid and diploid lucerne genotypes, genotypically defined for their reactions to Phytophthora medicaginis, were clonally propagated, and the influence of different reproducible inoculum levels (0 . 5 and 5 . 0 g dry weight mycelium/kg dry weight potting mix), the period of exposure to these levels (10-60 days), and temperature (16/22 degrees C and 24/30 degrees C) on disease expression was determined in controlled environments. Generally, expression of resistance by resistant genotypes, remained stable under these conditions. Biotic (e.g. Aphanomyces eutiches) or abiotic factors other than P. medicaginis may be responsible for the poorer than expected performance under field conditions in some instances, or the percentage of resistant plants in some cultivars currently classified as resistant is insufficient to provide buffering against productivity reductions under severe epidemics. Further research is needed to clarify the situation.
Resumo:
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-rone temperatures (RZTs): a constant 20 degreesC-RZT and a fluctuating ambient (A-) RZT from 23-40 degreesC, Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (g(s)), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio F-v/F-m than 20 degreesC-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although F-v/F-m did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (g(s) (sat)) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure, However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O-2 evolution (P-max), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P-max during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.
Resumo:
Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO2 g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (47 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.
Resumo:
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.
Resumo:
We introduce a time-dependent projected Gross-Pitaevskii equation to describe a partially condensed homogeneous Bose gas, and find that this equation will evolve randomized initial wave functions to equilibrium. We compare our numerical data to the predictions of a gapless, second order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)], and find that we can determine a temperature when the theory is valid. As the Gross-Pitaevskii equation is nonperturbative, we expect that it can describe the correct thermal behavior of a Bose gas as long as all relevant modes are highly occupied. Our method could be applied to other boson fields.
Resumo:
We calculate the two-particle local correlation for an interacting 1D Bose gas at finite temperature and classify various physical regimes. We present the exact numerical solution by using the Yang-Yang equations and Hellmann-Feynman theorem and develop analytical approaches. Our results draw prospects for identifying the regimes of coherent output of an atom laser, and of finite-temperature “fermionization” through the measurement of the rates of two-body inelastic processes, such as photoassociation.
Resumo:
We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.
Resumo:
We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz–Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.
Resumo:
A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.