11 resultados para Rockets (Aeronautics)

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stalker (AIAA Paper 87-0403) has suggested that, by ejecting molecules directly upstream from the entire face of a satellite, it is possible to reduce the drag on a satellite in low-Earth orbit and hence maintain orbit with a total fuel mass (for forward ejection and conventional reaction rockets) less than the typical mass requirements of conventional rockets. An analytical analysis is presented here, as well as Monte Carlo simulations. These indicate that to reduce the overall drag on the satellite significantly, collisions between the freestream and ejected molecules must occur at least two satellite diameters upstream. This can be achieved if the molecules are ejected far upstream from the satellite’s surface through a sting that projects forward from the satellite. Using some estimates of what would be feasible sting arrangements, we find that the drag on the satellite can be reduced to such an extent that the satellite’s orbit can be maintained with a total fuel mass of less than 60% of that required for reaction rockets alone. Upstream ejection is effective in reducing the drag for freestream Knudsen numbers less than approximately 250, but not otherwise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of computational fluid dynamics simulations for calibrating a flush air data system is described, In particular, the flush air data system of the HYFLEX hypersonic vehicle is used as a case study. The HYFLEX air data system consists of nine pressure ports located flush with the vehicle nose surface, connected to onboard pressure transducers, After appropriate processing, surface pressure measurements can he converted into useful air data parameters. The processing algorithm requires an accurate pressure model, which relates air data parameters to the measured pressures. In the past, such pressure models have been calibrated using combinations of flight data, ground-based experimental results, and numerical simulation. We perform a calibration of the HYFLEX flush air data system using computational fluid dynamics simulations exclusively, The simulations are used to build an empirical pressure model that accurately describes the HYFLEX nose pressure distribution ol cr a range of flight conditions. We believe that computational fluid dynamics provides a quick and inexpensive way to calibrate the air data system and is applicable to a broad range of flight conditions, When tested with HYFLEX flight data, the calibrated system is found to work well. It predicts vehicle angle of attack and angle of sideslip to accuracy levels that generally satisfy flight control requirements. Dynamic pressure is predicted to within the resolution of the onboard inertial measurement unit. We find that wind-tunnel experiments and flight data are not necessary to accurately calibrate the HYFLEX flush air data system for hypersonic flight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A space-marching code for the simulation and optimization of inviscid supersonic flow in three dimensions is described. The now in a scramjet module with a relatively complex three-dimensional geometry is examined and wall-pressure estimates are compared with experimental data. Given that viscous effects are not presently included, the comparison is reasonable. The thermodynamic compromise of adding heat in a diverging combustor is also examined. The code is then used to optimize the shape of a thrust surface for a simpler (box-section) scramjet module in the presence of uniform and nonuniform heat distributions. The optimum two-dimensional profiles for the thrust surface are obtained via a perturbation procedure that requires about 30-50 now solutions. It is found that the final shapes are fairly insensitive to the details of the heat distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shock-tunnel experiments have been performed to measure the effect on skin-friction drag in a supersonic combustor of flow disturbances induced by hydrogen fuel injection transverse to the airstream. Constant-area, circular cross section combustors of lengths varying up to 0.52 m were employed. The experiments were done at a stagnation enthalpy of 7.2 MJ . kg(-1) and a Mach number of 4.3, with a boundary layer that was turbulent downstream of the 0.14-m station in the combustors. Combustor skin-friction drag was measured by a method based on the stress wave force balance, the method being validated by agreement between fuel-off skin-friction drag measurements and predictions using existing skin-friction theories. When fuel was injected, it was found that the drag remained at fuel-off values. Thus, the streamwise vortices and other flow disturbances induced by the fuel injection, mixing, and combustion, which are expected to be present in a scramjet combustor, did not influence the skin-friction drag of the combustors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of chaotic vibrations in a dual-spin spacecraft with an axial nutational damper is achieved using two techniques. The control methods are implemented on two realistic spacecraft parameter configurations that have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude motion and, consequently, could have disastrous effects on its operation. The two control methods, recursive proportional feedback and continuous delayed feedback, are recently developed techniques for control of chaotic motion in dynamic systems. Each technique is outlined and the effectiveness on this model compared and contrasted. Numerical simulations are performed, and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents, and bifurcation diagrams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acceleration compensated transducer was developed to enable the direct measurement of skin friction in hypervelocity impulse facilities. The gauge incorporated a measurement and acceleration element that employed direct shear of a piezoelectric ceramic. The design integrated techniques to maximize rise time and shear response while minimizing the affects of acceleration, pressure, heat transfer, and electrical interference. The arrangement resulted in a transducer natural frequency near 40 kHz. The transducer was calibrated for shear and acceleration in separate bench tests and was calibrated for pressure within an impulse facility. Uncertainty analyses identified only small experimental errors in the shear and acceleration calibration techniques. Although significant errors were revealed in the method of pressure calibration, total skin-friction measurement errors as low as +/-7-12% were established. The transducer was successfully utilized in a shock tunnel, and sample measurements are presented for flow conditions that simulate a flight Mach number near 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments to investigate the transition process in hypervelocity boundary layers were performed in the T4 free-piston shock tunnel. An array of thin-film heat-transfer gauges was used to detect the location and extent of the transitional region on a 1500 mm long x 120 turn wide flat plate, which formed one of the walls of a duct. The experiments were performed in a Mach 6 flow of air with 6- and 12-MJ/kg nozzle-supply enthalpies at unit Reynolds numbers ranging from 1.6 x 10(6) to 4.9 x 10(6) m(-1). The results show that the characteristics typical of transition taking place through the initiation, growth, and merger of turbulent spots are evident in the heat-transfer signals. A 2-mm-high excrescence located 440 turn from the leading edge was found to be capable of generating a turbulent wedge within an otherwise laminar boundary layer at a unit Reynolds number of 2.6 x 10(6) m(-1) at the 6-MJ/kg condition. A tripping strip, located 100 mm from the leading edge and consisting of a line 37 teeth of 2 rum height equally spaced and spanning the test surface, was also found to be capable of advancing the transition location at the same condition and at the higher enthalpy condition.