10 resultados para Robots -- Computer programming
em University of Queensland eSpace - Australia
Resumo:
This paper describes a formal component language, used to support automated component-based program development. The components, referred to as templates, are machine processable, meaning that appropriate tool support, such as retrieval support, can be developed. The templates are highly adaptable, meaning that they can be applied to a wide range of problems. Some of the main features of the language are described, including: higher-order parameters; state variable declarations; specification statements and conditionals; applicability conditions and theories; meta-level place holders; and abstract data structures.
Resumo:
Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.
Resumo:
The application of energy minimisation methods for stereo matching has been demonstrated to produce high quality disparity maps. However the majority of these methods are known to be computationally expensive, requiring minutes or even hours of computation. We propose a fast minimisation scheme that produces strongly competitive results for significantly reduced computation, requiring only a few seconds of computation. In this paper, we present our iterated dynamic programming algorithm along with a quadtree subregioning process for fast stereo matching.
Resumo:
"Totally functional programming" (TFP) advocates the complete replacement of symbolic representations for data by functions. TFP is motivated by observations from practice in language extensibility and functional programming. Its technical essence extends the role of "fold" functions in structuring functional programs to include methods that make comparisons on elements of data structures. The obstacles that currently prevent the immediate uptake of TFP as a style within functional programming equally indicate future research directions in the areas of theoretical foundations, supporting technical infrastructure, demonstrated practical applicability, and relationship to OOP.
Resumo:
The real-time refinement calculus is an extension of the standard refinement calculus in which programs are developed from a precondition plus post-condition style of specification. In addition to adapting standard refinement rules to be valid in the real-time context, specific rules are required for the timing constructs such as delays and deadlines. Because many real-time programs may be nonterminating, a further extension is to allow nonterminating repetitions. A real-time specification constrains not only what values should be output, but when they should be output. Hence for a program to implement such a specification, it must guarantee to output values by the specified times. With standard programming languages such guarantees cannot be made without taking into account the timing characteristics of the implementation of the program on a particular machine. To avoid having to consider such details during the refinement process, we have extended our real-time programming language with a deadline command. The deadline command takes no time to execute and always guarantees to meet the specified time; if the deadline has already passed the deadline command is infeasible (miraculous in Dijkstra's terminology). When such a realtime program is compiled for a particular machine, one needs to ensure that all execution paths leading to a deadline are guaranteed to reach it by the specified time. We consider this checking as part of an extended compilation phase. The addition of the deadline command restores for the real-time language the advantage of machine independence enjoyed by non-real-time programming languages.