170 resultados para Robotics, Automation, Vision systems
em University of Queensland eSpace - Australia
Resumo:
The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.
Resumo:
A question is examined as to estimates of the norms of perturbations of a linear stable dynamic system, under which the perturbed system remains stable in a situation R:here a perturbation has a fixed structure.
Resumo:
Fixed-point roundoff noise in digital implementation of linear systems arises due to overflow, quantization of coefficients and input signals, and arithmetical errors. In uniform white-noise models, the last two types of roundoff errors are regarded as uniformly distributed independent random vectors on cubes of suitable size. For input signal quantization errors, the heuristic model is justified by a quantization theorem, which cannot be directly applied to arithmetical errors due to the complicated input-dependence of errors. The complete uniform white-noise model is shown to be valid in the sense of weak convergence of probabilistic measures as the lattice step tends to zero if the matrices of realization of the system in the state space satisfy certain nonresonance conditions and the finite-dimensional distributions of the input signal are absolutely continuous.
Resumo:
A new approach to identify multivariable Hammerstein systems is proposed in this paper. By using cardinal cubic spline functions to model the static nonlinearities, the proposed method is effective in modelling processes with hard and/or coupled nonlinearities. With an appropriate transformation, the nonlinear models are parameterized such that the nonlinear identification problem is converted into a linear one. The persistently exciting condition for the transformed input is derived to ensure the estimates are consistent with the true system. A simulation study is performed to demonstrate the effectiveness of the proposed method compared with the existing approaches based on polynomials. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.
Resumo:
Evolution strategies are a class of general optimisation algorithms which are applicable to functions that are multimodal, nondifferentiable, or even discontinuous. Although recombination operators have been introduced into evolution strategies, the primary search operator is still mutation. Classical evolution strategies rely on Gaussian mutations. A new mutation operator based on the Cauchy distribution is proposed in this paper. It is shown empirically that the new evolution strategy based on Cauchy mutation outperforms the classical evolution strategy on most of the 23 benchmark problems tested in this paper. The paper also shows empirically that changing the order of mutating the objective variables and mutating the strategy parameters does not alter the previous conclusion significantly, and that Cauchy mutations with different scaling parameters still outperform the Gaussian mutation with self-adaptation. However, the advantage of Cauchy mutations disappears when recombination is used in evolution strategies. It is argued that the search step size plays an important role in determining evolution strategies' performance. The large step size of recombination plays a similar role as Cauchy mutation.
Resumo:
Coset enumeration is a most important procedure for investigating finitely presented groups. We present a practical parallel procedure for coset enumeration on shared memory processors. The shared memory architecture is particularly interesting because such parallel computation is both faster and cheaper. The lower cost comes when the program requires large amounts of memory, and additional CPU's. allow us to lower the time that the expensive memory is being used. Rather than report on a suite of test cases, we take a single, typical case, and analyze the performance factors in-depth. The parallelization is achieved through a master-slave architecture. This results in an interesting phenomenon, whereby the CPU time is divided into a sequential and a parallel portion, and the parallel part demonstrates a speedup that is linear in the number of processors. We describe an early version for which only 40% of the program was parallelized, and we describe how this was modified to achieve 90% parallelization while using 15 slave processors and a master. In the latter case, a sequential time of 158 seconds was reduced to 29 seconds using 15 slaves.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
We discuss quantum error correction for errors that occur at random times as described by, a conditional Poisson process. We shoo, how a class of such errors, detected spontaneous emission, can be corrected by continuous closed loop, feedback.
Resumo:
The fabrication of heavy-duty printer heads involves a great deal of grinding work. Previously in the printer manufacturing industry, four grinding procedures were manually conducted in four grinding machines, respectively. The productivity of the whole grinding process was low due to the long loading time. Also, the machine floor space occupation was large because of the four separate grinding machines. The manual operation also caused inconsistent quality. This paper reports the system and process development of a highly integrated and automated high-speed grinding system for printer heads. The developed system, which is believed to be the first of its kind, not only produces printer heads of consistently good quality, but also significantly reduces the cycle time and machine floor space occupation.
Resumo:
Uncontrolled systems (x) over dot is an element of Ax, where A is a non-empty compact set of matrices, and controlled systems (x) over dot is an element of Ax + Bu are considered. Higher-order systems 0 is an element of Px - Du, where and are sets of differential polynomials, are also studied. It is shown that, under natural conditions commonly occurring in robust control theory, with some mild additional restrictions, asymptotic stability of differential inclusions is guaranteed. The main results are variants of small-gain theorems and the principal technique used is the Krasnosel'skii-Pokrovskii principle of absence of bounded solutions.
Resumo:
Any given n X n matrix A is shown to be a restriction, to the A-invariant subspace, of a nonnegative N x N matrix B of spectral radius p(B) arbitrarily close to p(A). A difference inclusion x(k+1) is an element of Ax(k), where A is a compact set of matrices, is asymptotically stable if and only if A can be extended to a set B of nonnegative matrices B with \ \B \ \ (1) < 1 or \ \B \ \ (infinity) < 1. Similar results are derived for differential inclusions.