21 resultados para Rna Polymerase Ii

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular function of the menin tumor suppressor protein, product of the MEN1 gene mutated in familial multiple endocrine neoplasia type 1, has not been defined. We now show that menin is associated with a histone methyltransferase complex containing two trithorax family proteins, MLL2 and Ash2L, and other homologs of the yeast Set1 assembly. This menin-associated complex methylates histone H3 on lysine 4. A subset of tumor-derived menin mutants lacks the associated histone methyltransferase activity. In addition, menin is associated with RNA polymerase II whose large subunit carboxyl-terminal domain is phosphorylated on Ser5. Men1 knockout embryos and cells show decreased expression of the homeobox genes Hoxc6 and Hoxc8. Chromatin immunoprecipitation experiments reveal that menin is bound to the Hoxc8 locus. These results suggest that menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, quantitative real-time PCR is the method of choice for rapid and reliable quantification of mRNA transcription. However, for an exact comparison of mRNA transcription in different samples or tissues it is crucial to choose the appropriate reference gene. Recently glyceraldehyde 3-phosphate dehydrogenase and P-actin have been used for that purpose. However, it has been reported that these genes as well as alternatives, like rRNA genes, are unsuitable references, because their transcription is significantly regulated in various experimental settings and variable in different tissues. Therefore, quantitative real-time PCR was used to determine the mRNA transcription profiles of 13 putative reference genes, comparing their transcription in 16 different tissues and in CCRF-HSB-2 cells stimulated with 12-O-tetradecanoylphorbol-13-acetate and ionomycin. Our results show that Classical reference genes are indeed unsuitable, whereas the RNA polymerase II gene was the gene with the most constant expression in different tissues and following stimulation in CCRF-HSB-2 cells. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is a multifactorial autoimmune disease, with strong genetic component. Several susceptibility loci contribute to genetic predisposition to T1D. One of these loci have been mapped to chromosome 1q42 in UK and US joined affected family data sets but needs to be replicated in other populations. In this study, we evaluated sixteen microsatellites located on 1q42 for linkage with T1D in 97 Russian affected sibling pairs. A 2.7-cm region of suggestive linkage to T1D between markers D1S1644 and D1S225 was found by multipoint linkage analysis. The peak of linkage was shown for D1S2847 (P = 0.0005). Transmission disequilibrium test showed significant undertransmission of the 156-bp allele of D1S2847 from parents to diabetic children (28 transmissions vs. 68 nontransmissions, P = 0.043) in Russian affected families. A preferential transmission from parents to diabetic offspring was also shown for the T(-25) and T1362 alleles of the C/T(-25) and C/T1362 dimorphisms, both located at the TAF5L gene, which is situated 103 kb from D1S2847. Together with the A/C744 TAF5L SNP, these markers share common T(-25)/A744/T1362 and C(-25)/C744/T1362 haplotypes associated with higher and lower risk of diabetes (Odds Ratio = 2.15 and 0.62, respectively). Our results suggest that the TAF5L gene, encoding TAF5L-like RNA polymerase II p300/CBP associated factor (PCAF)-associated factor, could represent the susceptibility gene for T1D on chromosome 1q42 in Russian affected patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a welldefined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the two largest collections of Mus musculus and Homo sapiens transcription start sites ( TSSs) determined based on CAGE tags, ditags, full- length cDNAs, and other transcript data, we describe the compositional landscape surrounding TSSs with the aim of gaining better insight into the properties of mammalian promoters. We classified TSSs into four types based on compositional properties of regions immediately surrounding them. These properties highlighted distinctive features in the extended core promoters that helped us delineate boundaries of the transcription initiation domain space for both species. The TSS types were analyzed for associations with initiating dinucleotides, CpG islands, TATA boxes, and an extensive collection of statistically significant cis- elements in mouse and human. We found that different TSS types show preferences for different sets of initiating dinucleotides and ciselements. Through Gene Ontology and eVOC categories and tissue expression libraries we linked TSS characteristics to expression. Moreover, we show a link of TSS characteristics to very specific genomic organization in an example of immune- response- related genes ( GO: 0006955). Our results shed light on the global properties of the two transcriptomes not revealed before and therefore provide the framework for better understanding of the transcriptional mechanisms in the two species, as well as a framework for development of new and more efficient promoter- and gene- finding tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although MYB overexpression in colorectal cancer (CRC) is known to be a prognostic indicator for poor survival, the basis for this overexpression is unclear. Among multiple levels of MYB regulation, the most dynamic is the control of transcriptional elongation by sequences within intron I. The authors have proposed that this regulatory sequence is transcribed into an RNA stem-loop and 19-residue polyuridine tract, and is subject to mutation in CRC. When this region was examined in colorectal and breast carcinoma cell lines and tissues, the authors found frequent mutations only in CRC. It was determined that these mutations allowed increased transcription compared with the wild type sequence. These data suggest that this MYB regulatory region within intron I is subject to mutations in CRC but not breast cancer, perhaps consistent with the mutagenic insult that occurs within the colon and not mammary tissue. In CRC, these mutations may contribute to MYB overexpression, highlighting the importance of noncoding sequences in the regulation of key cancer genes. (c) 2006 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than fifteen years following the description of Tat as a critical HIV gene expression regulatory protein, additional roles for Tat in HIV replication have been described, including reverse transcription. Tat achieves function through direct interaction with viral proteins, including reverse transcriptase, and numerous cellular proteins including cyclin T1, RNA polymerase 11, protein kinase R (PKR), p300/CBP, and P/CAF. Despite our advanced knowledge of how Tat operates, this has not yet resulted in the discovery of effective agents capable of targeting various Tat functions. Nevertheless, Tat remains an attractive, virus-specific molecule and detailed understanding of specific protein interaction holds promise for future drug discovery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parasitoid wasps use a variety of mechanisms to alter their host's physiology to the benefit of the developing endoparasite inside the host larva. Association of certain wasps with viruses and virus-like particles (VLPs) that contribute to their success in parasitism is one of the fascinating evolutionary adaptations conferring active or passive protection for the endoparasite from the host immune system. Venturia canescens has been shown to produce VLPs that provide protection for the developing parasitoid egg inside the host, Ephestia kuehniella. Here, we report on the presence of a novel small RNA-containing virus from V. canescens, designated as VcSRV, occurring in the ovaries of the wasp. The virus particles are found together with VcVLPs in the lumen of the calyx region of the ovaries and are injected together with the egg and VcVLPs into E kuehniella larvae where they enter hemocytes. Alignment of the RNA-dependent RNA polymerase gene of VcSRV indicates that the virus most likely belongs to the recently described genus Iflavirus. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity. Steady-state enzymatic parameters were determined on homopolymeric template poly(rC). The presence of the MTase domain does not affect the RdRp activity. Flavivirus RdRp domains might bear more than one GTP binding site displaying positive cooperativity. The kinetics of RNA synthesis by four Flaviviridae RdRps were compared. In comparison to Hepatitis C RdRp, DV and WNV as well as Bovine Viral Diarrhea virus RdRps show less rate limitation by early steps of short-product fort-nation. This suggests that they display a higher conformational flexibility upon the transition from initiation to elongation. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcin J25 is a 21 amino acid bacterial peptide that has potent antibacterial activity against Gram-negative bacteria, resulting from its interaction with RNA polymerase. The peptide was previously proposed to have a head-to-tail cyclized peptide backbone and a tight globular structure (Blond, A., Peduzzi, J., Goulard, C., Chiuchiolo, M. J., Barthelemy, M., Prigent, Y., Salomon, R. A., Farias, R. N., Moreno, F. & Rebuffat, S. Eur. J. Biochem. 1999, 259, 747-755). It exhibits remarkable thermal stability for a peptide of its size lacking disulfide bonds and in part this was previously proposed to derive from its macrocyclic structure. We show here that in fact the peptide does not have a head-to-tail cyclic structure but rather a side chain to backbone cyclization between Glu8 and the N-terminus. This creates an embedded ring that is threaded by the C-terminal tail of the molecule, forming a noose-like feature. The three-dimensional structure deduced from NMR data suggests that slippage of the noose is prevented by two aromatic residues flanking the embedded ring. Unthreading does not occur even when the molecule is enzymatically digested with thermolysin. The new structural interpretation fully accounts for previously reported NMR and biophysical data and is consistent with the remarkable stability of this potent antimicrobial peptide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The two sets of connected membranes induced in Kunjin virus-infected cells are characterized by the presence of NS3 helicase/protease in both, and by RNA-dependent RNA polymerase (RdRp) activity plus the associated double-stranded RNA (dsRNA) template in vesicle packets (VP), or by the absence of both the VP-specific markers in the convoluted membranes/paracrystalline arrays (CM/PC). Attempts were made to separate flavivirus-induced membranes by sedimentation or flotation analyses in density gradients of sucrose or iodixanol, respectively, after treatment of cell lysates by sonication, osmotic shock, or tryptic digestion. Only osmotic shock treatment provided suggestive evidence of separation. This was explored by flow cytometry analysis (FCA) of RdRp active membrane fractions from a sucrose gradient, using dual fluorescent labelling via antibodies to NS3 and dsRNA. FCA revealed the presence of a dual labelled membrane population indicative of VP, and in a faster sedimenting fraction a membrane population able to be labelled only in NS3, representative of CM/PC and associated (R)ER. It was postulated that osmotic shock ruptured the bounding membrane of the VP, releasing the enclosed small vesicles associated with the Kunjin virus replication complex characterized previously. Notably, the presence of the full spectrum of nonstructural proteins in some membrane fractions was not a reliable marker for RdRp activity. These experiments may provide the opportunity for isolation of relatively pure flavivirus replication complexes in their native membrane-associated state by fluorescence-activated cell sorting. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A growing body of evidence suggests that the Golgi complex contains an actin-based filament system. We have previously reported that one or more isoforms from the tropomyosin gene Tm5NM (also known as gamma-Tm), but not from either the alpha- or beta-Tm genes, are associated with Golgi-derived vesicles (Heimann et al., (1999). J. Biol. Chem. 274, 10743-10750). We now show that Tm5NM-2 is sorted specifically to the Golgi complex, whereas Tm5NM-1, which differs by a single alternatively spliced internal exon, is incorporated into stress fibers. Tm5NM-2 is localized to the Golgi complex consistently throughout the G1 phase of the cell cycle and it associates with Golgi membranes in a brefeldin A-sensitive and cytochalasin D-resistant manner. An actin antibody, which preferentially reacts with the ends of microfilaments, newly reveals a population of short actin filaments associated with the Golgi complex and particularly with Golgi-derived vesicles. Tm5NM-2 is also found on these short microfilaments. We conclude that an alternative splice choice can restrict the sorting of a tropomyosin isoform to short actin filaments associated with Golgi-derived vesicles. Our evidence points to a role for these Golgi-associated microfilaments in vesicle budding at the level of the Golgi complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

sThe structure of a two-chain peptide formed by the treatment of the potent antimicrobial peptide microcin J25 (MccJ25) with thermolysin has been characterized by NMR spectroscopy and mass spectrometry. The native peptide is 21 amino acids in size and has the remarkable structural feature of a ring formed by linkage of the side chain of Glu8 to the N-terminus that is threaded by the C-terminal tail of the peptide. Thermolysin cleaves the peptide at the Phe10-Val11 amide bond, but the threading of the C-terminus through the N-terminal ring is so tight that the resultant two chains remain associated both in the solution and in the gas phases. The three-dimensional structure of the thermolysin-cleaved peptide derived using NMR spectroscopy and simulated annealing calculations has a well-defined core that comprises the N-terminal ring and the threading C-terminal tail. In contrast to the well-defined core, the newly formed termini at residues Phe10 and Val11 are disordered in solution. The C-terminal tail is associated to the ring both by hydrogen bonds stabilizing a short beta-sheet and by hydrophobic interactions. Moreover, unthreading of the tail through the ring is prevented by the bulky side chains of Phe19 and Tyr20, which flank the octapeptide ring. This noncovalent two-peptide complex that has a remarkable stability in solution and in highly denaturing conditions and that survives in the gas phase is the first example of such a two-chain peptide lacking disulfide or interchain covalent bonds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyrrhacoricin is a naturally occurring antimicrobial peptide from the European fire bug Pyrrhocoris apterus. It has submicromolar activity against a range of Gram-negative bacterial strains and has created recent interest as a lead for the development of novel antibiotic compounds. In this study, we have used NMR spectroscopy to determine the solution structures of pyrrhocoricin and a synthetic macrocyclic derivative that has improved in vivo pharmaceutical properties. Native pyrrhocoricin is largely disordered in solution, but there is evidence of a subpopulation with ordered turn regions over residues 2-5, 4-7, and 16-19. The macrocyclic derivative incorporates a nine amino acid linker joining the N- and C-termini, which does not adversely affect the antimicrobial potency but leads to a broader spectrum of activity. The NMR data suggest that the turn conformations in the cyclic derivative are similar to those in the native form, thus implicating them in the biological function. (C) 2004 Wiley Periodicals, Inc.