54 resultados para Rigid inclusions
em University of Queensland eSpace - Australia
Resumo:
The tetraalcohol 2,3,5,6-endo,endo,endo,endo-tetrakis(hydroxymethyl]bicyclo[2.2.1]heptane (tetol, 1) has been prepared and crystallises readily as the lithium(I) complex [Li(1)(2)]Cl, forming an oligomeric multi-chain structure in which pairs of alcohols from two crystallographically independent tetol molecules bind lithium ions tetrahedrally. However, formation of monomeric structures in solution is inferred from electrospray mass spectroscopy, which has also shown evidence of exchange of lithium ion in the complexed species by added alkaline earth ions. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Extension of overthickened continental crust is commonly characterized by an early core complex stage of extension followed by a later stage of crustal-scale rigid block faulting. These two stages are clearly recognized during the extensional destruction of the Alpine orogen in northeast Corsica, where rigid block faulting overprinting core complex formation eventually led to crustal separation and the formation of a new oceanic backarc basin (the Ligurian Sea). Here we investigate the geodynamic evolution of continental extension by using a novel, fully coupled thermomechanical numerical model of the continental crust. We consider that the dynamic evolution is governed by fault weakening, which is generated by the evolution of the natural-state variables (i.e., pressure, deviatoric stress, temperature, and strain rate) and their associated energy fluxes. Our results show the appearance of a detachment layer that controls the initial separation of the brittle crust on characteristic listric faults, and a core complex formation that is exhuming strongly deformed rocks of the detachment zone and relatively undeformed crustal cores. This process is followed by a transitional period, characterized by an apparent tectonic quiescence, in which deformation is not localized and energy stored in the upper crust is transferred downward and causes self-organized mobilization of the lower crust. Eventually, the entire crust ruptures on major crosscutting faults, shifting the tectonic regime from core complex formation to wholesale rigid block faulting.
Resumo:
It has been known since the early sixties that nickel sulfide inclusions cause spontaneous fracture of toughened (thermally tempered) glass, but despite the considerable amount of work done on this problem in the last four decades, failures still occur in the field with regularity. In this study we have classified (by viewing through a 60x optical microscope) inclusions into two groups, which are classic and atypical nickel sulfides. The classics look like the nickel sulfide inclusions found at the initiation-of-fracture of windows that have broken spontaneously. We have compared the structure and composition of the atypical inclusions with the structure and composition of the classics. All of the classic and atypical nickel sulfide inclusions studied in this work were found to have a composition in the range of Ni52S48 to Ni48S52. Inclusions on the nickel rich side of stoichiometric NiS were found to be two-phase assemblies, and inclusions on the sulphur rich side of NiS were single phase. It had been proposed that the atypicals were passive, and of a different composition to the classics. However, we found that the difference between passive and dangerous nickel sulfide inclusions was not a difference in composition but rather a difference in the type of material in the internal pore space. The passive's had carbon char in their internal pore space, whereas the pore space of dangerous inclusions contained Na2O. The presence of Na2O and carbon char with the inclusions indicates that the formation of the inclusions results from a reaction of a nickel-rich phase with sodium sulphate and carbon. (C) 2001 Kluwer Academic Publishers.
Resumo:
Uncontrolled systems (x) over dot is an element of Ax, where A is a non-empty compact set of matrices, and controlled systems (x) over dot is an element of Ax + Bu are considered. Higher-order systems 0 is an element of Px - Du, where and are sets of differential polynomials, are also studied. It is shown that, under natural conditions commonly occurring in robust control theory, with some mild additional restrictions, asymptotic stability of differential inclusions is guaranteed. The main results are variants of small-gain theorems and the principal technique used is the Krasnosel'skii-Pokrovskii principle of absence of bounded solutions.
Resumo:
The stability of difference inclusions x(k+1) is an element of F(x(k)) is studied, where F(x) = {F(x, gimel) : is an element of Lambda} and the selections F(., gimel) : E -->E assume values in a Banach space E, partially ordered by a cone K. It is assumed that the operators F(.,gimel) are heterotone or pseudoconcave. The main results concern asymptotically stable absorbing sets, and include the case of a single equilibrium point. The results are applied to a number of practical problems.
Resumo:
Any given n X n matrix A is shown to be a restriction, to the A-invariant subspace, of a nonnegative N x N matrix B of spectral radius p(B) arbitrarily close to p(A). A difference inclusion x(k+1) is an element of Ax(k), where A is a compact set of matrices, is asymptotically stable if and only if A can be extended to a set B of nonnegative matrices B with \ \B \ \ (1) < 1 or \ \B \ \ (infinity) < 1. Similar results are derived for differential inclusions.
Resumo:
Rigid-shelled eggs of the broad-shelled river turtle Chelodina expansa were incubated at 28 degreesC in wet (-100 kPa), intermediate (-350 kPa) and dry (-750 kPa) conditions. Incubation period was influenced by clutch of origin, but was independent of incubation water potential. Rates of water gained from the environment and pre-pipping egg mass were influenced by incubation water potential - eggs incubating at higher (less negative) water potentials absorbing more water from their environment. Hatchlings from wet conditions had greater mass but a smaller amount of residual yolk than hatchlings from dry conditions and it is suggested that the amount of yolk converted to tissue is influenced by the amount of water absorbed by the egg during incubation. Water content of yolk-free hatchlings from the -100-kPa treatment was greater than those from the 350-kPa and -750-kPa treatments, but the water content of residual yolks was similar across all hydric conditions.
Resumo:
Objective: To investigate the impact characteristics of an ethylene vinyl acetate (EVA) mouthguard material with regulated air inclusions, which included various air cell volumes and wall thickness between air cells. In particular, the aim was to identify the magnitude and direction of forces within the impacts. Method: EVA mouthguard material, A mm thick and with and without air inclusions, was impacted with a constant force impact pendulum with an energy of 4.4 J and a velocity of 3 m/s. Transmitted forces through the EVA material were measured using an accelerometer, which also allowed the determination of force direction and magnitude within the impacts. Results: Statistically significant reductions in the transmitted forces were observed with all the air inclusion materials when compared with EVA without air inclusions. Maximum transmitted force through one air inclusion material was reduced by 32%. Force rebound was eliminated in one material, and reduced second force impulses were observed in all the air inclusion materials. Conclusion: The regulated air inclusions improved the impact characteristics of the EVA mouthguard material, the material most commonly used in mouthguards world wide.
Resumo:
In this paper, we introduce and study a new system of variational inclusions involving (H, eta)-monotone operators in Hilbert space. Using the resolvent operator associated with (H, eta)monotone operators, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To identify the effect of reactive preparation on the structure and properties of rigid polyurethane (PU)layered silicate nanocomposite, a range of nanocomposites were prepared by combining the various precursors in different sequences. The morphology of the samples was characterized by XRD and TEM. Tensile properties and dynamic mechanical thermal properties were measured. The reactions between the layered silicates and PU precursors were monitored via FTIR to gain an understanding of the participation of nanofiller in the polymerization reaction, and the impact of this on system stoichiometry. The XRD and TEM results provided evidence that morphology can differ significantly if different synthesis methods are used. However, the mechanical properties are dominated by the stoichiometry imbalance induced by the addition of the layered silicates. (c) 2006 Wiley Periodicals, Inc.
Resumo:
This paper describes a generic method for the site-specific attachment of lathanide complexes to proteins through a disulfide bond. The method is demonstrated by the attachment of a lanthanide-binding peptide tag to the single cysteine residue present in the N-terminal DNA-binding domain of the Echerichia coli arginine repressor. Complexes with Y3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ ions were formed and analysed by NMR spectroscopy. Large pseudocontact shifts and residual dipolar couplings were induced by the lanthanide-binding tag in the protein NMR spectrum, a result indicating that the tag was rigidly attached to the protein. The axial components of the magnetic susceptibility anisostropy tensors determined for the different lanthanide ions were similarly but not identically oriented. A single tag with a single protein attachment site can provide different pseudocontact shifts from different magnetic susceptibility tensors and thus provide valuable nondegenerate long-range structure information in the determination of 3D protein structures by NMR spectroscopy.