48 resultados para Rifts (Geology)
em University of Queensland eSpace - Australia
Resumo:
Examples from the Murray-Darling basin in Australia are used to illustrate different methods of disaggregation of reconnaissance-scale maps. One approach for disaggregation revolves around the de-convolution of the soil-landscape paradigm elaborated during a soil survey. The descriptions of soil ma units and block diagrams in a soil survey report detail soil-landscape relationships or soil toposequences that can be used to disaggregate map units into component landscape elements. Toposequences can be visualised on a computer by combining soil maps with digital elevation data. Expert knowledge or statistics can be used to implement the disaggregation. Use of a restructuring element and k-means clustering are illustrated. Another approach to disaggregation uses training areas to develop rules to extrapolate detailed mapping into other, larger areas where detailed mapping is unavailable. A two-level decision tree example is presented. At one level, the decision tree method is used to capture mapping rules from the training area; at another level, it is used to define the domain over which those rules can be extrapolated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Evolution of localized folding patterns in layered elastic and visco-elastic materials is reviewed in the context of compressed geological systems. The thin strut or plate embedded in a visco-elastic medium is used as an archetypal example to describe localized buckles which, in contrast to those from earlier formulations, appear in the absence of triggering imperfections. Structural and material effects are surveyed and important nonlinear characteristics are identified. A brief review of possible methods of analysis is conducted.
Resumo:
Coastal photograph of Sillon du Talbert, L'Armor, Pleubian on 16 April 2004 low tide. End of the Sillon, looking N-N-E at the Archipel d'Ollone. The Sillon du Talbert is a natural thin 3-km long tongue made of "galets" (pebbles about 5 to 20 cm) and sand. It is located at the tip of a peninsula between the estuaries of the rivers Jaudy (Le Jaudy) and Trieux (Le Trieux) next to Ile de Bre´hat. At the end of the Sillon, there is an archipel of small islands and rocks called "Archipel d'Ollone" (Ollone archipel), also called the Talbert islands (Iles de Talbert) by the locals. The Sillon du Talbert (or Sillon de Talbert) is an important reserve of flora and fauna. The Sillon was damaged by locals using stones for construction until 1928, and by the Germans, who used stones for the Ile Blanche bunker system construction in 1943 as part of the WWII Atlantic wall. (Coastal Photograph by Hubert Chanson, Department of Civil Engineering, the University of Queensland, Brisbane, Queensland 4072, Australia.)
Resumo:
Aber Wrac’h, Pays du Léon, Bretagne. Aber Wrac’h, Bretagne, France, on 10 March 2004 at 13:30 (low tide) looking North (downstream) towards the Aber mouth and open sea between Lannilis and Plougerneau, Pays des Abers, Pays du Le´on. The word "Aber" is Britton (Breton) for a "fjord"-like estuary. Located on the Channel, the region "Pays des Abers" includes several deep incisions in the coastlines. The best known ‘‘Abers’’ are the Aber Wrac’h and Aber Benoit in the Pays du Léon, Finistere Nord.
Resumo:
This website is linked to UNESCO.org and is free to download for educational purposes. It contains a database of school science experiments and investigations in physics, chemistry, biology, astronomy, geology, weather studies, agriculture projects for primary and secondary schools; and sexuality education and drugs education. It is based on a revision, updating and expansion of the "New UNESCO source book for science teaching", 1979 edition, UNESCO, Paris. It contains experiments from the "low cost" science teaching movement, simplified versions of classical experiments, experiments using locally available substances and kitchen chemicals, and environmental science. Some experiments anticipate experiments usually done in senior high school or college classes. The experiments should be "student-friendly" and "teacher-friendly" because there is no overwhelming technology. Enough theoretical background is included to remind teachers of the theoretical context of the experiment. Every experiment is based on materials listed in a modern commercial catalogue of chemicals and equipment for use by educational institutions. The procedures and safety standards are consistent with instructions issued by Education Queensland (Ministry of Education), State of Queensland, Australia.
Resumo:
Small mesothermal vein quam-gold-base-metal sulfide deposits from which some 20 t of Au-Ag bullion have been extracted, are the most common gold deposits in the Georgetown region of north Queensland-several hundred were mined or prospected between 1870 and 1950. These deposits are mostly hosted by Proterozoic granitic and metamorphic rocks and are similar to the much larger Charters Towers deposits such as Day Dawn and Brilliant, and in some respects to the Motherlode deposits of California. The largest deposit in the region-Kidston (> 138 t of Au and Ag since 1985)- is substantially different. It is hosted by sheeted quartz veins and cavities in brecciated Silurian granite and Proterozoic metamorphics above nested high-level Carboniferous intrusives associated with a nearby cauldron subsidence structure. This paper provides new information (K-Ar and Rb-Sr isotopic ages, preliminary oxygen isotope and fluid-inclusion data) from some of the mesothermal deposits and compares it with the Kidston deposit. All six dated mesothermal deposits have Siluro-Devonian (about 425 to 400 Ma) ages. All nine of such deposits analysed have delta(18)O quartz values in the range 8.4 to 15.7 parts per thousand, Fluid-inclusion data indicate homogenisation temperatures in the range 230-350 degrees C. This information, and a re-interpretation of the spatial relationships of the deposits with various elements of the updated regional geology, is used to develop a preliminary metallogenic model of the mesothermal Etheridge Goldfield. The model indicates how the majority of deposits may have formed from hydrothermal systems initiated during the emplacement of granitic batholiths that were possibly, but not clearly, associated with Early Palaeozoic subduction, and that these fluid systems were dominated by substantially modified meteoric and/or magmatic fluids. The large Kidston deposit and a few small relatives are of Carboniferous age and formed more directly from magmatic systems much closer to the surface.
Resumo:
Two geographically distinct silcrete associations are present in southern Australia, inland and eastern; these were sampled in central South Australia and central Victoria, respectively, At each site, both silicified and immediately adjacent unsilicified parent material were collected. Analytical data from these pairs were used to construct isocons, assuming Zr immobility, and to calculate the volume change and amount of silica introduced during silicification, These results, together with whole-rock oxygen isotope compositions, were used to determine the delta(18)O of th, introduced silica, The results show that the eastern silcretes in central Victoria are probably linked genetically to the associated basalts, weathering of which supplied the introduced silica, This conclusion is based on the close spatial connection between the two, as well as the substantial amount of introduced silica in the silcretes (greater than in the inland silcretes), resulting in volume increases in some eastern silcretes, Oxygen isotopic calculations for the silcretes indicate that the silica precipitated from groundwaters at temperatures slightly higher than present conditions. Silcrete formation apparently occurred during the Miocene and Pliocene (basalts in Victoria younger than Pliocene lack associated silcrete) and may reflect the much wetter climate in southeastern Australia at that time. The inland silcretes of central South Australia can be divided into pedogenic (the most common) and groundwater varieties. The pedogenic silcretes, which show typical soil features like columnar and nodular textures, contain moderate amounts of introduced silica that precipitated by evaporation from saline groundwaters, For the groundwater silcretes, which have massive textures and formed at or close to the water table, insufficient data are available to determine the mode of formation. The inland pedogenic silcretes have probably been farming from the Eocene-Miocene to the present, implying that conditions of seasonally high evaporation have occurred in central Australia during this time period. Thus silcrete formation depends on a complex interplay between climate and silica supply, and it is impossible to generalize that the presence of silcrete is indicative of a particular climate. Likewise, the elemental composition of silcretes, particularly Ti content, is not necessarily of climatic significance, Nevertheless, detailed geochemical and oxygen isotopic studies of a silcrete and its parent material can elucidate the mechanisms of silcrete formation, and if evaporation is indicated as a major factor in silcrete formation, then the climate at the time was likely to have been at least seasonally arid.
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Resumo:
Fine-grained pyrite is the earliest generation of pyrite and the most abundant sulfide within the Urquhart Shale at Mount Isa, northwest Queensland. The pyrite is intimately interbanded with ore-grade Pb-Zn miner alization at the Mount Isa mine but is also abundant north and south of the mine at several stratigraphic horizons within the Urquhart Shale. Detailed sedimentologic, petrographic, and sulfur isotope studies of the Urquhart Shale, mostly north of the mine, reveal that the fine-grained pyrite (delta(34)S = -3.3 to +26.3 parts per thousand) formed by thermochemical sulfate reduction during diagenesis. The sulfate source was local sulfate evaporites, pseudo morphs of which are present throughout the Urquhart Shale (i.e., gypsum, anhydrite, and barite). Deep-burial diagenetic replacement of these evaporites resulted in sulfate-bearing ground waters which migrated parallel to bedding. Fine-grained pyrite formed where these fluids infiltrated and then interacted with carbon-rich laminated siltstones. Comparison of the sulfur isotope systematics of fine-grained pyrite and spatially associated base metal sulfides from the Mount Isa Pb-Zn and Cu orebodies indicates a common sulfur source of ultimately marine origin for all sulfide types. Different sulfur isotope ratio distributions for the various sulfides are the result of contrasting formation mechanisms and/or depositional conditions rather than differing sulfur sources. The sulfur isotope systematics of the base metal and associated iron sulfide generations are consistent with mineralization by reduced hydrothermal fluids, perhaps generated by bulk reduction of evaporite-sourced sulfate-bearing waters generated deeper in the Mount Isa Group, the sedimentary sequence which contains the Urquhart Shale. The available sulfur isotope data from the Mount Isa orebodies are consistent with either a chemically and thermally zoned, evolving Cu-Pb-Zn system, or discrete Cu and Pb-Zn mineralizing events linked by a common sulfur source.
Resumo:
Authigenic carbonate minerals are ubiquitous throughout the Late Permian coal measures of the Bowen Basin, Queensland, Australia. In the northern Bowen Basin, carbonates include the following assemblages: siderite I (delta O-18(SMOW) = +11.4 to + 17%, delta C-13(PDB) = - 5.3 to + 120), Fe-Mg calcite-ankerite-siderite II mineral association (delta O-18(SMOW) = +7.2 to + 10.20, delta C-13(PDB) = 10.9 to - 1.80 for ankerite) and a later calcite (delta O-18(SMOW) = +5.9 to + 14.60, delta C-13(PDB) = -11.4 to + 4.40). In the southern Bowen Basin, the carbonate phase consists only of calcite (delta O-18(SMOW) = +12.5 to + 14.80, delta C-13(PDB) = -19.4 to + 0.80), where it occurs extensively throughout all stratigraphic levels. Siderite I occurs in mudrocks and sandstones and predates all other carbonate minerals. This carbonate phase is interpreted to have formed as an early diagenetic mineral from meteoric waters under cold climate and reducing conditions. Fe-Mg calcite-ankerite-siderite Il occur in sandstones as replacement of volcanic rock fragments. Clay minerals (illite-smectite, chlorite and kaolinite) postdate Ca-Fe-Mg carbonates, and precipitation of the later calcite is associated with clay mineral formation. The Ca-Fe-Mg carbonates and later calcite of the northern Bowen Basin are regarded as having formed as a result of hydrothermal activity during the latest Triassic extensional tectonic event which affected this part of the basin, rather than deep burial diagenesis during the Middle to Late Triassic as previously reported. This hypothesis is based on the timing relationships of the authigenic mineral phases and the low delta O-18 values of ankerite and calcite, together with radiometric dating of illitic clays and recently published regional geological evidence. Following the precipitation of the Ca-Fe-Mg carbonates from strongly O-18-depleted meteoric-hydrothermal fluids, continuing fluid circulation and water-rock interaction resulted in dissolution of these carbonate phases as well as labile fragments of volcaniclastic rocks. Subsequently, the later calcite and day minerals precipitated from relatively evolved (O-18-enriched) fluids. The nearly uniform delta O-18 values of the southern Bowen Basin calcite have been attributed to very low water/rock ratio in the system, where the fluid isotropic composition was buffered by the delta O-18 values of rocks. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The principle of using induction rules based on spatial environmental data to model a soil map has previously been demonstrated Whilst the general pattern of classes of large spatial extent and those with close association with geology were delineated small classes and the detailed spatial pattern of the map were less well rendered Here we examine several strategies to improve the quality of the soil map models generated by rule induction Terrain attributes that are better suited to landscape description at a resolution of 250 m are introduced as predictors of soil type A map sampling strategy is developed Classification error is reduced by using boosting rather than cross validation to improve the model Further the benefit of incorporating the local spatial context for each environmental variable into the rule induction is examined The best model was achieved by sampling in proportion to the spatial extent of the mapped classes boosting the decision trees and using spatial contextual information extracted from the environmental variables.