53 resultados para Reynard the Fox.
em University of Queensland eSpace - Australia
Resumo:
Demonstrating the existence of trends in monitoring data is of increasing practical importance to conservation managers wishing to preserve threatened species or reduce the impact of pest species. However, the ability to do so can be compromised if the species in question has low detectability and the true occupancy level or abundance of the species is thus obscured. Zero-inflated models that explicitly model detectability improve the ability to make sound ecological inference in such situations. In this paper we apply an occupancy model including detectability to data from the initial stages of a fox-monitoring program on the Eyre Peninsula, South Australia. We find that detectability is extremely low (< 18%) and varies according to season and the presence or absence of roadside vegetation. We show that simple methods of using monitoring data to inform management, such as plotting the raw data or performing logistic regression, fail to accurately diagnose either the status of the fox population or its trajectory over time. We use the results of the detectability model to consider how future monitoring could be redesigned to achieve efficiency gains. A wide range of monitoring programs could benefit from similar analyses, as part of an active adaptive approach to improving monitoring and management.
Resumo:
The present study investigates the somatotopic representation in the somatosensory thalamus of a megachiropteran bat. Using standard microelectrode mapping techniques, representational maps were generated for the ventrobasal (Vb) and posterior (Po) thalamic complexes of the Grey-headed flying fox. Anatomical tracing from neocortical injections provided additional data confirming the somatotopy found physiologically. A full representation of the body surface innervated by the trigeminal and spinal nerves was found. However, in contrast with other mammals, the representations of the forelimb and adjacent thoracic trunk within the thalamus were inverted. This means that the distal portions of the wing membrane and the tips of the digits were represented dorsally in Vb, and the thoracic trunk was represented ventrally In Po the digit tips were represented in the ventral most portion and the thoracic trunk in the dorsal portion of the nucleus. These results are discussed in relation to similarities of megachiropteran somatosensory thalamic nuclei to those of other mammalian species and in relation to the formation of thalamic somatotopic maps and fiber sorting.
Resumo:
The black flying fox Pteropus alecto is one of four species of flying fox found on the Australian mainland. Little information exists about the specific behaviour of this species, and no framework for the study of its behaviour has yet been constructed. In the study reported here, two P alecto colonies were observed at two day roosts in South East Queensland, Australia, between 1998-2000. Observations focused on solitary and social actions in general and on mother-infant interactions in some detail and led to the construction of an ethogram that defines each action structurally and functionally, describing accompanying vocalisations where appropriate. Diurnal activity patterns of P. alecto throughout the year consisted predominantly of roosting, grooming and sleeping, and involved little social activity. Social interactions were largely restricted to the seasonal contexts of the birthing/rearing period of October to March and the subsequent courtship/mating season of February to April. In all, 74 behavioural units were defined with the aim of facilitating further research and the implementation of effective conservation strategies for the species.
Resumo:
Flying foxes are commonly thought of as highly social mammals, yet little is known about the dynamics of their social interactions at a day roost. The aim of the present study was to examine the nature of the seasonal activities of territoriality and courtship amongst wild flying foxes in Australia. Focal observations were conducted at two permanent roosts of black flying foxes Pteropus alecto during periods of peak social interaction in the summers of 1999 and 2000 in urban Brisbane, Queensland. Observations of male territoriality were conducted at dawn and began eight weeks prior to the commencement of mating. The majority of defense bouts (87%) consisted of ritualised pursuit, while 13% of bouts involved physical contact expressed as either wrestling or hooking. One male with an unusually large territory took significantly longer to defend it than other males with less territory to defend. Observations of courtship revealed repetitive courtship sequences, including pre-copulatory approaches by the males, copulation attempts and grooming/resting periods. Thirty-four complete courtship sequences incorporating 135 copulation attempts were recorded over two seasons. Females actively resisted courtship approaches by males, forcing males to display a continuous determination to mate over time where determination can be considered an indicator of 'fitness'. The courtship bout length of females with suckling young was significantly longer ((x) over bar +/- SE; 230.9 +/- 22.16 s) than that of females unencumbered by large pups (158.5 +/- 9.69 s), although the length of copulations within those courtships was not (45.6 +/- 5.19 versus 36.2 +/- 3.43 s).
Resumo:
Objective To evaluate cardiac electrical function in the Spectacled Flying Fox (bat) infested with Ixodes holocyclus. Design Prospective clinical investigation of bats treated for naturally occurring tick toxicity. Procedure ECGs were performed on bats with tick toxicity (n = 33), bats that recovered slowly (n = 5) and normally (n = 5) following treatment for tick toxicity, and on normal bats with no history of tick toxicity (n = 9). Results Bats with tick toxicity had significantly prolonged corrected QT intervals, bradycardia and rhythm disturbances which included sinus bradydysrhythmia, atrial standstill, ventricular premature complexes, and idioventricular bradydysrhythmia. Conclusions The QT prolongation observed on ECG traces of bats with tick toxicity reflected delayed ventricular repolarisation and predisposed to polymorphic ventricular tachycardia and sudden cardiac death in response to sympathetic stimulation. The inability to document ventricular tachycardia in bats shortly before death from tick toxicity may be explained by a lack of sympathetic responsiveness attributable to the unique parasympathetic innervation of the bat heart, or hypothermiainduced catecholamine receptor down-regulation. Bradycardia and rhythm disturbances may be attributable to hypothermia.
Resumo:
We studied thalamic projections to the visual cortex in flying foxes, animals that share neural features believed to resemble those present in the brains of early primates. Neurones labeled by injections of fluorescent tracers in striate and extrastriate cortices were charted relative to the architectural boundaries of thalamic nuclei. Three main findings are reported: First, there are parallel lateral geniculate nucleus (LGN) projections to striate and extrastriate cortices. Second, the pulvinar complex is expansive, and contains multiple subdivisions. Third, across the visual thalamus, the location of cells labeled after visual cortex injections changes systematically, with caudal visual areas receiving their strongest projections from the most lateral thalamic nuclei, and rostral areas receiving strong projections from medial nuclei. We identified three architectural layers in the LGN, and three subdivisions of the pulvinar complex. The outer LGN layer contained the largest cells, and had strong projections to the areas V1, V2 and V3. Neurones in the intermediate LGN layer were intermediate in size, and projected to V1 and, less densely, to V2. The layer nearest to the origin of the optic radiation contained the smallest cells, and projected not only to V1, V2 and V3, but also, weakly, to the occipitotemporal area (OT, which is similar to primate middle temporal area) and the occipitoparietal area (OP, a third tier area located near the dorsal midline). V1, V2 and V3 received strong projections from the lateral and intermediate subdivisions of the pulvinar complex, while OP and OT received their main thalamic input from the intermediate and medial subdivisions of the pulvinar complex. These results suggest parallels with the carnivore visual system, and indicate that the restriction of the projections of the large- and intermediatesized LGN layers to V1, observed in present-day primates, evolved from a more generalized mammalian condition. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Zinc fingers are recognized as small protein domains that bind to specific DNA sequences. Recently however, zinc fingers from a number of proteins, in particular the GATA family of transcription factors, have also been implicated in specific protein-protein interactions. The erythroid protein GATA-1 contains two zinc fingers: the C-finger, which is sufficient for sequence-specific DNA-binding, and the N-finger, which appears both to modulate DNA-binding and to interact with other transcription factors. We have expressed and purified the N-finger domain and investigated its involvement in the self-association of GATA-1. We demonstrate that this domain does not homodimerize but instead makes intermolecular contacts with the C-finger, suggesting that GATA dimers are maintained by reciprocal N-finger-C-finger contacts. Deletion analysis identifies a 25-residue region, C-terminal to the core N-finger domain, that is sufficient for interaction with intact GATA-1. A similar subdomain exists C-terminal to the C-finger, and we show that self-association is substantially reduced when both subdomains are disrupted by mutation. Moreover, mutations that impair GATA-1 self-association also interfere with its ability to activate transcription in transfection studies.
Resumo:
Restricted cochlear lesions in adult animals result in plastic changes in the representation of the lesioned cochlea, and thus in the frequency map, in the contralateral auditory cortex and thalamus. To examine the contribution of subthalamic changes to this reorganization, the effects of unilateral mechanical cochlear lesions on the frequency organization of the central nucleus of the inferior colliculus (ICC) were examined in adult cats. Lesions typically resulted in a broad high-frequency hearing loss extending from a frequency in the range 15-22 kHz. After recovery periods of 2.5-18 months, the frequency organization of ICC contralateral to the lesioned cochlea was determined separately for the onset and late components of multiunit responses to tone-burst stimuli. For the late response component in all but one penetration through the ICC, and for the onset response component in more than half of the penetrations, changes in frequency organization in the lesion projection zone were explicable as the residue of prelesion responses. In half of the penetrations exhibiting nonresidue type changes in onset-response frequency organization, the changes appeared to reflect the unmasking of normally inhibited inputs. In the other half it was unclear whether the changes reflected unmasking or a dynamic process of reorganization. Thus, most of the observed changes were explicable as passive consequences of the lesion, and there was limited evidence for plasticity in the ICC. The implications of the data with respect to the primary locus of the changes and to the manner in which they contribute to thalamocortical reorganization are considered. (C) 2003 Wiley-Liss, Inc.