49 resultados para Reversible modulation
em University of Queensland eSpace - Australia
Resumo:
Two different doses of Ross River virus (1111) were fed to Ochlerotatus vigilax (Skuse), the primary coastal vector in Australia; and blood engorged females were held at different temperatures up to 35 d. After ingesting 10(4.3) CCID50/Mosquito, mosquitoes reared at 18 and 25degreesC (and held at the same temperature) had higher body remnant and head and salivary gland titers than those held at 32degreesC, although infection rates were comparable. At 18, 25, and 32degreesC, respectively, virus was first detected in the salivary glands on days 3, 2, and 3. Based on a previously demonstrated 98.7% concordance between salivary gland infection and transmission, the extrinsic incubation periods were estimated as 5, 4, and 3 d, respectively, for these three temperatures. When Oc. vigilax reared at 18, 25, or 32degreesC were fed a lower dosage of 10(3.3) CCID50 RR/mosquito, and assayed after 7 d extrinsic incubation at these (or combinations of these) temperatures, infection rates and titers were similar. However, by 14 d, infection rates and titers of those reared and held at 18 and 32degreesC were significantly higher and lower, respectively. However, this process was reversible when the moderate 25degreesC was involved, and intermediate infection rates and titers resulted. These data indicate that for the strains of RR and Oc. vigilax used, rearing temperature is unimportant to vector competence in the field, and that ambient temperature variations will modulate or enhance detectable infection rates only after 7 d: extrinsic incubation. Because of the short duration of extrinsic incubation, however, this will do little to influence RR epidemiology, because by this time some Oc. vigilax could be seeking their third blood meal, the latter two being infectious.
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cav(DGV)) to study LB formation and to examine its effect on LB function. We now show that the cav(DGV) mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Marijuana is a frequently used recreational drug. We describe the first published case of marijuana related cardiomyopathy.
Resumo:
This work deals with a solution method to handle multicomponents reversible reactions occurring inside a porous catalyst pellet. The complexity of this problem arises from the fact that the effective diffusivities and Biot number, which characterizes the external mass transfer, are different for each chemical species. In mathematical terms, this means that each chemical species has its own subspace and, therefore, when the technique of finite integral transform is applied to solve this multicomponent problem, each chemical species is associated with its own integral transform kernel. The analytical solutions obtained for this problem are compact and simple for any further manipulation. Application of this result to the catalytic reforming of C7 hydrocarbon system is shown in this paper.
Resumo:
This paper examines the manipulation of forms of the traditional Japanese stroll garden at Site of Reversible Destiny, a tourist park designed by the New Yorkbased collaborators Shusaku Arakawa and Madeline Gins. Landscape and its representations are central to the construction of national identity in Japan since the cultural distinctiveness of the Japanese people has been argued to rest on their unique relationship to nature and the country’s idiosyncratic geography. The stroll garden of the larger estates and palaces of the Edo period (1615–1867) developed out of earlier temple gardens and most public parks in contemporary Japan are in the grounds of these historic sites or reproduce their forms.
Resumo:
Experimental suppression of chaos has been achieved in an optically pumped far-infrared (NH3)-N-15 laser which displays Lorenz-like chaos. The method of control involves the application of a large amplitude slow (i.e., nonresonant) modulation of the pump power. This may be related to a delayed bifurcation to chaos observed when the pump power is ramped at a constant late.
Resumo:
In this work we have defined the nature of the p-cresol and p-thiocresol adducts generated from acylium ions during HF cleavage, following contemporary Boc/benzyl solid-phase peptide synthesis. Contrary to the results in previous reports, we found that both p-cresol and p-thiocresol predominantly form. aryl esters under typical cleavage conditions. Initially we investigated a number of small peptides containing either a single glutamate residue or a C-terminal long-chain amino acid which allowed us to unambiguously characterize the scavenged side products. Whereas, the p-cresol esters are stable at 0 degrees C they rearrange irreversibly at higher temperatures (5-20 degrees C) to form aryl ketones. By contrast, p-thiocresol esters do not undergo a Fries rearrangement but readily undergo further additions of p-thiocresol to form ketenebisthioacetals and trithio ortho esters, even at low temperatures. Importantly, we found by LC/MS and FT-ICR MS analysis that peptides containing p-cresol esters at glutamyl side chains are susceptible to amidation and fragmentation reactions at these sites during standard mild base workup procedures. The significance of these side reactions was further demonstrated in the synthesis of neutrophil immobilization factor, a 26-residue peptide, containing four glutamic acid residues. The side reactions were largely avoided by mild hydrogen peroxide-catalyzed hydrolysis which converted the p-cresol adducts to the free carboxylic acids in near quantitative yield. The choice of p-cresol as a reversible acylium ion scavenger when coupled with the simple workup conditions described is broadly applicable to Boc/benzyl peptide synthesis and will significantly enhance the quality of peptides produced.
Resumo:
The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.
Resumo:
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Resumo:
Our previous investigations of possible lung mechanisms underlying the effectiveness of nebulized morphine for the relief of dyspnoea, have shown a high density of non-conventional opioid binding sites in rat airways with similar binding characteristics (opioid alkaloid-sensitive, opioid peptide-insensitive) to that of putative mu(3)-opioid receptors on immune cells. To investigate whether these lung opioid binding sites are functional receptors, this study was designed to determine (using superfusion) whether morphine modulates the K+-evoked release of the pro-inflammatory neuropeptide, substance P (SP), from rat peripheral airways. Importantly, K+-evoked SP release was Ca2+-dependent, consistent with vesicular release. Submicromolar concentrations of morphine (1 and 200 nM) inhibited K+-evoked SP release from rat peripheral airways in a naloxone (1 mu M) reversible manner. By contrast, 1 mu M morphine enhanced K+-evoked SP release and this effect was not reversed by 1 mu M naloxone. However, 100 mu M naloxone not only antagonized the facilitatory effect of 1 mu M morphine on K+-evoked SP release from rat peripheral airways but it inhibited release to a similar extent as 200 nM morphine. It is possible that these latter effects are mediated by non-conventional opioid receptors located on mast cells, activation of which causes naloxone-reversible histamine release that in turn augments the release of SP from sensory nerve terminals in the peripheral airways. Clearly, further studies are required to investigate this possibility. (C) 1997 Academic Press Limited.
Resumo:
In two experiments we investigated the effect of generalized orienting induced by changing the modality of the lead stimulus on the modulation of blink reflexes elicited by acoustic stimuli. In Experiment 1 (n = 32), participants were presented with acoustic or visual change stimuli after habituation training with tactile lead stimuli. In Experiment 2 (n = 64), modality of the lead stimulus (acoustic vs. visual) was crossed with experimental condition (change vs. no change). Lead stimulus change resulted in increased electrodermal orienting in both experiments. Blink latency shortening and blink magnitude facilitation increased from habituation to change trials regardless of whether the change stimulus was presented in the same or in a different modality as the reflex-eliciting stimulus. These results are not consistent with modality-specific accounts of attentional startle modulation.
Resumo:
1. The present study investigated the effects of lengthening and shortening actions on IT-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastroenemius (MG) of human subject, during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/- 15 deg s(-1). 2. H-reflex amplitude, in froth SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric R-reflex amplitude. 3. Four experiments were performed in which the latencies front the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found tee begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that, the H-reflex modulation seen in the present study is related to the tunic discharge of muscle spindle afferents and the consequent effects of transmission within the la pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may he attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in la fibres that are refractory following muscle spindle discharge during; rapid muscle lengthening, a reduced probability of transmitter release front the presynaptic terminal (homosynaptic post.-activation depression) and presynaptic inhibition of la afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.