39 resultados para Return to school
em University of Queensland eSpace - Australia
Representations of the return to "Mother" in Canadian and Australian settler-invader women's writing
Resumo:
This study uses a sample of young Australian twins to examine whether the findings reported in [Ashenfelter, Orley and Krueger, Alan, (1994). 'Estimates of the Economic Return to Schooling from a New Sample of Twins', American Economic Review, Vol. 84, No. 5, pp.1157-73] and [Miller, P.W., Mulvey, C and Martin, N., (1994). 'What Do Twins Studies Tell Us About the Economic Returns to Education?: A Comparison of Australian and US Findings', Western Australian Labour Market Research Centre Discussion Paper 94/4] are robust to choice of sample and dependent variable. The economic return to schooling in Australia is between 5 and 7 percent when account is taken of genetic and family effects using either fixed-effects models or the selection effects model of Ashenfelter and Krueger. Given the similarity of the findings in this and in related studies, it would appear that the models applied by [Ashenfelter, Orley and Krueger, Alan, (1994). 'Estimates of the Economic Return to Schooling from a New Sample of Twins', American Economic Review, Vol. 84, No. 5, pp. 1157-73] are robust. Moreover, viewing the OLS and IV estimators as lower and upper bounds in the manner of [Black, Dan A., Berger, Mark C., and Scott, Frank C., (2000). 'Bounding Parameter Estimates with Nonclassical Measurement Error', Journal of the American Statistical Association, Vol. 95, No.451, pp.739-748], it is shown that the bounds on the return to schooling in Australia are much tighter than in [Ashenfelter, Orley and Krueger, Alan, (1994). 'Estimates of the Economic Return to Schooling from a New Sample of Twins', American Economic Review, Vol. 84, No. 5, pp. 1157-73], and the return is bounded at a much lower level than in the US. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Resternotomy is a common part of cardiac surgical practice. Associated with resternotomy are the risks of cardiac injury and catastrophic hemorrhage and the subsequent elevated morbidity and mortality in the operating room or during the postoperative period. The technique of direct vision resternotomy is safe and has fewer, if any, serious cardiac injuries. The technique, the reduced need for groin cannulation and the overall low operative mortality and morbidity are the focus of this restrospective analysis. Methods: The records of 495 patients undergoing 546 resternotomies over a 21-year period to January 2000 were reviewed. All consecutive reoperations by the one surgeon comprised patients over the age of 20 at first resternotomy: M:F 343:203, mean age 57 years (range 20 to 85, median age 60). The mean NYHA grade was 2.3 [with 67 patients (1), 273 (11),159 (111), 43 (IV), and 4 (V classification)] with elective reoperation in 94.6%. Cardiac injury was graded into five groups and the incidence and reasons for groin cannulation estimated. The morbidity and mortality as a result of the reoperation and resternotomy were assessed. Results: The hospital/30 day mortality was 2.9% (95% Cl: 1.6%-4.4%) (16 deaths) over the 21 years. First (481), second (53), and third (12) resternotomies produced 307 uncomplicated technical reopenings, 203 slower but uncomplicated procedures, 9 minor superficial cardiac lacerations, and no moderate or severe cardiac injuries. Direct vision resternotomy is crystalized into the principle that only adhesions that are visualized from below are divided and only sternal bone that is freed of adhesions is sewn. Groin exposure was never performed prophylactically for resternotomy. Fourteen patients (2.6%) had such cannulation for aortic dissection/aneurysm (9 patients), excessive sternal adherence of cardiac structures (3 patients), presurgery cardiac arrest (1 patient), and high aortic cannulation desired and not possible (1 patient). The average postop blood loss was 594 mL (95% CI:558-631) in the first 12 hours. The need to return to the operating room for control of excessive bleeding was 2% (11 patients). Blood transfusion was given in 65% of the resternotomy procedures over the 21 years (mean 854 mL 95% Cl 765-945 mL) and 41% over the last 5 years. Conclusions: The technique of direct vision resternotomy has been associated with zero moderate or major cardiac injury/catastrophic hemorrhage at reoperation. Few patients have required groin cannulation. In the postoperative period, there was acceptable blood loss, transfusion rates, reduced morbidity, and moderate low mortality for this potentially high risk group.
Resumo:
Utilization of salt affected wasteland by growing forage shrubs has enormous economic and environmental implication for developing countries like Pakistan, where approximately 6.3 million ha of the land is salt affected. Considering the importance of Atriplex and Maireana species, research has been conducted using their different species on the salt affected soils of Faisalabad. Most of Atriplex and Maireana species survived under the environmental conditions of Faisalabad and gave the good yield in the form of forage. Some of these species are woody and can be used for fuel purposes. Sixteen genotypes of Atriplex and Maireana were tested for their tolerance to waterlogging in order to identify halophytic fodder shrubs suitable for growth on secondary salt-affected and waterlogged farmland. The physiological and morphological responses of the species tested were typical of species with a generally poor tolerance to waterlogging. Despite this, some species (eg A. Amnicola) were surprisingly resistant, surviving up to five months of waterlogging at moderate salinity and high evapotranspirational demand. The most resistant species, A amnicola maintained higher transpiration rates, leaf water potentials and shoot extension rates than most other species during five weeks of waterlogging, and a return to control levels more quickly than other species after plots were drained. Although little morphological adaptation to waterlogged conditions was detected, a shallow and extensive lateral root system and the formation of many short aerenchymatous adventitious roots from procumbent branches appeared to advantage A. Amnicola in an environment highly heterogeneous in salinity and low in oxygen concentration. Shallow fibrous rooted species were quickly killed by waterlogging, although the procumbent branches of some individuals survived as clones if they developed adventitious roots.
Resumo:
The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (> 10-second) or short (< 10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type Ha muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.
Resumo:
Large (>1600 mum), ingestively masticated particles of bermuda grass (Cynodon dactylon L. Pers.) leaf and stem labelled with Yb-169 and Ce-144 respectively were inserted into the rumen digesta raft of heifers grazing bermuda grass. The concentration of markers in digesta sampled from the raft and ventral rumen were monitored at regular intervals over approximately 144 h. The data from the two sampling sites were simultaneously fitted to two pool (raft and ventral rumen-reticulum) models with either reversible or sequential flow between the two pools. The sequential flow model fitted the data equally as well as the reversible flow model but the reversible flow model was used because of its greater application. The reversible flow model, hereafter called the raft model, had the following features: a relatively slow age-dependent transfer rate from the raft (means for a gamma 2 distributed rate parameter for leaf 0.0740 v. stem 0.0478 h(-1)), a very slow first order reversible flow from the ventral rumen to the raft (mean for leaf and stem 0.010 h(-1)) and a very rapid first order exit from the ventral rumen (mean of leaf and stem 0.44 h(-1)). The raft was calculated to occupy approximately 0.82 total rumen DM of the raft and ventral rumen pools. Fitting a sequential two pool model or a single exponential model individually to values from each of the two sampling sites yielded similar parameter values for both sites and faster rate parameters for leaf as compared with stem, in agreement with the raft model. These results were interpreted as indicating that the raft forms a large relatively inert pool within the rumen. Particles generated within the raft have difficulty escaping but once into the ventral rumen pool they escape quickly with a low probability of return to the raft. It was concluded that the raft model gave a good interpretation of the data and emphasized escape from and movement within the raft as important components of the residence time of leaf and stem particles within the rumen digesta of cattle.