5 resultados para Respiratory viruses
em University of Queensland eSpace - Australia
Resumo:
Cell culture and direct fluorescent antibody (DFA) assays have been traditionally used for the laboratory diagnosis of respiratory viral infections. Multiplex reverse transcriptase polymerase chain reaction (m-RT-PCR) is a sensitive, specific, and rapid method for detecting several DNIA and RNA viruses in a single specimen. We developed a m-RT-PCR assay that utilizes multiple virus-specific primer pairs in a single reaction mix combined with an enzyme-linked amplicon hybridization assay (ELAHA) using virus-specific probes targeting unique gene sequences for each virus. Using this m-RT-PCR-ELAHA, we examined the presence of seven respiratory viruses in 598 nasopharyngeal aspirate (NPA) samples from patients with suspected respiratory infection. The specificity of each assay was 100%. The sensitivity of the DFA was 79.7% and the combined DFA/culture amplified-DFA (CA-DFA) was 88.6% when compared to the m-RT-PCR-ELAHA. Of the 598 NPA specimens screened by m-RT-PCR-ELAHA, 3% were positive for adenovirus (ADM), 2% for influenza A (Flu A) virus, 0.3% for influenza B (Flu B) virus, 1% for parainfluenza type I virus (PIV1), 1% for parainfluenza type 2 virus (PIV2), 5.5% for parainfluenza type 3 virus (PIV3), and 21% for respiratory syncytial virus (RSV). The enhanced sensitivity, specificity, rapid result turnaround time and reduced expense of the m-RT-PCR-ELAHA compared to DFA and CA-DFA, suggests that this assay would be a significant improvement over traditional assays for the detection of respiratory viruses in a clinical laboratory.
Resumo:
Since the role of respiratory viruses in lung exacerbations of patients with cystic fibrosis has been hampered by the difficulty of detecting viruses in viscous sputum specimens, a multiplex reverse transcriptase PCR (RT-PCR) assay combined with colorimetric amplicon detection was tested for the identification of seven common respiratory viruses in the sputa of cystic fibrosis patients. Of 52 sputa from 38 patients, 12 (23%) samples from 12 patients were positive for a respiratory virus (4 for influenza B, 3 for parainfluenza 1, 3 for influenza A and 2 for respiratory syncytial virus). These results suggest that the RT-PCR method carried out on sputum may provide a convenient means of investigating the role of virus infection in lung exacerbations of cystic fibrosis patients.
Resumo:
Background. Genital ulcer disease (GUD) is commonly caused by pathogens for which suitable therapies exist, but clinical and laboratory diagnoses may be problematic. This collaborative project was undertaken to address the need for a rapid, economical, and sensitive approach to the detection and diagnosis of GUD using noninvasive techniques to sample genital ulcers. Methods. The genital ulcer disease multiplex polymerase chain reaction (GUMP) was developed as an inhouse nucleic acid amplification technique targeting serious causes of GUD, namely, herpes simplex viruses (HSVs), Haemophilus ducreyi, Treponema pallidum, and Klebsiella species. In addition, the GUMP assay included an endogenous internal control. Amplification products from GUMP were detected by enzyme linked amplicon hybridization assay (ELAHA). Results. GUMP-ELAHA was sensitive and specific in detecting a target microbe in 34.3% of specimens, including 1 detection of HSV-1, three detections of HSV-2, and 18 detections of T. pallidum. No H. ducreyi has been detected in Australia since 1998, and none was detected here. No Calymmatobacterium ( Klebsiella) granulomatis was detected in the study, but there were 3 detections during ongoing diagnostic use of GUMP-ELAHA in 2004 and 2005. The presence of C. granulomatis was confirmed by restriction enzyme digestion and nucleotide sequencing of the 16S rRNA gene for phylogenetic analysis. Conclusions. GUMP-ELAHA permitted comprehensive detection of common and rare causes of GUD and incorporated noninvasive sampling techniques. Data obtained by using GUMP-ELAHA will aid specific treatment of GUD and better define the prevalence of each microbe among at-risk populations with a view to the eradication of chancroid and donovanosis in Australia.
Resumo:
Viruses are the major cause of pediatric acute respiratory tract infection (ARTI) and yet many suspected cases of infection remain uncharacterized. We employed 17 PCR assays and retrospectively screened 315 specimens selected by season from a predominantly pediatric hospital-based population. Before the Brisbane respiratory virus research study commenced, one or more predominantly viral pathogens had been detected in 15.2% (n = 48) of all specimens. The Brisbane study made an additional 206 viral detections, resulting in the identification of a microbe in 67.0% of specimens. After our study, the majority of microbes detected were RNA viruses (89.9%). Overall, human rhinoviruses (HRVs) were the most frequently identified target (n=140) followed by human adenoviruses (HAdVs; n = 25), human metapneumovirus (HMPV; n=18), human bocavirus (HBoV; n = 15), human respiratory syncytial virus (HRSV; n = 12), human coronaviruses (HCoVs; n = 11), and human herpesvirus-6 (n = 11). HRVs were the sole microbe detected in 37.8% (n = 31) of patients with suspected lower respiratory tract infection (LRTI). Genotyping of the HRV VP4/VP2 region resulted in a proposed subdivision of HRV type A into sublineages A1 and A2. Most of the genotyped HAdV strains were found to be type C. This study describes the high microbial burden imposed by HRVs, HMPV, HRSV, HCoVs, and the newly identified virus, HBoV on a predominantly paediatric hospital population with suspected acute respiratory tract infections and proposes a new formulation of viral targets for future diagnostic research studies.