4 resultados para Resonant photoemission
em University of Queensland eSpace - Australia
Resumo:
In this paper, we investigate transmission of electromagnetic wave through aperiodic dielectric multilayers. A generic feature shown is that the mirror symmetry in the system can induce the resonant transmission, which originates from the positional correlations (for example, presence of dimers) in the system. Furthermore, the resonant transmission can be manipulated at a specific wavelength by tuning aperiodic structures with internal symmetry. The theoretical results are experimentally proved in the optical observation of aperiodic SiO2/TiO2 multilayers with internal symmetry. We expect that this feature may have potential applications in optoelectric devices such as the wavelength division multiplexing system.
Resumo:
The development of near-resonant holographic interferometry techniques for use on flows seeded with atomic species is described. A theoretical model for the refractivity that is due to the seed species is outlined, and an approximation to this model is also described that is shown to be valid for practical regimes of interest and allows the number density of the species to be determined without knowledge of line-broadening effects. The details of quantitative number density experiments performed on an air-acetylene flame are given, and a comparison with an alternative absorption-based experiment is made. (C) 2004 Optical Society of America.
Resumo:
Near-resonant holographic interferometry is demonstrated to measure temperature and species concentration in a two-dimensional steady premixed air-acetylene flame. A peak temperature of (2600 +/- 100) K and a peak OH number density of (9.6 +/- 0.3) X 10(22) m(-3) are obtained, consistent with the expected values for such a flame. These values are determined by recording interferograms with a laser assumed sufficiently detuned from line center so that pressure and temperature broadening can be ignored. The results are thus obtained without making prior assumptions on the temperature or pressure of the flame beyond the existence of thermal equilibrium. (C) 2004 Optical Society of America.