52 resultados para Resistencia al flujo
em University of Queensland eSpace - Australia
Resumo:
Durante las últimas tres décadas el interés y diversidad en el uso de canales escalonados han aumentado debido al desarrollo de nuevas técnicas y materiales que permiten su construcción de manera rápida y económica (Concreto compactado con rodillo CCR, Gaviones, etc.). Actualmente, los canales escalonados se usan como vertedores y/o canales para peces en presas y diques, como disipadores de energía en canales y ríos, o como aireadores en plantas de tratamiento y torrentes contaminados. Diversos investigadores han estudiado el flujo en vertedores escalonados, enfocándose en estructuras de gran pendiente ( 45o) por lo que a la fecha, el comportamiento del flujo sobre vertedores con pendientes moderadas ( 15 a 30o) no ha sido totalmente comprendido. El presente artículo comprende un estudio experimental de las propiedades físicas del flujo aire-agua sobre canales escalonados con pendientes moderadas, típicas en presas de materiales sueltos. Un extenso rango de gastos en condiciones de flujo rasante se investigó en dos modelos experimentales a gran escala (Le = 3 a 6): Un canal con pendiente 3.5H:1V ( 16o) y dos alturas de escalón distintas (h = 0.1 y 0.05 m) y un canal con pendiente 2.5H:1V ( 22o) y una altura de escalón de h = 0.1 m. Los resultados incluyen un análisis detallado de las propiedades del flujo en vertedores escalonados con pendientes moderadas y un nuevo criterio de diseño hidráulico, el cual está basado en los resultados experimentales obtenidos. English abstract: Stepped chutes have been used as hydraulic structures since antiquity, they can be found acting as spillways and fish ladders in dams and weirs, as energy dissipators in artificial channels, gutters and rivers, and as aeration enhancers in water treatment plants and polluted streams. In recent years, new construction techniques and materials (Roller Compacted Concrete RCC, rip-rap gabions, etc.) together with the development of the abovementioned new applications have allowed cheaper construction methods, increasing the interest in stepped chute design. During the last three decades, research in stepped spillways has been very active. However, studies prior to 1993 neglected the effect of free-surface aeration. A number of studies have focused since on steep stepped chutes ( 45o) but the hydraulic performance of moderate-slope stepped channels is not yet totally understood. This study details an experimental investigation of physical air-water flow properties down moderate slope stepped spillways conducted in two laboratory models: the first model was a 3.15 m long stepped chute with a 15.9o slope comprising two interchangeable step heights (h = 0.1 m and h = 0.05 m); the second model was a 3.3 m long, stepped channel with a 21.8o slope (h = 0.1 m). A broad range of discharges within transition and skimming flow regimes was investigated. Measurements were conducted using a double tip conductivity probe. The study provides new, original insights into air-water stepped chute flows not foreseen in prior studies and presents a new design criterion for chutes with moderate slopes based on the experimental results.
Resumo:
The effect of increasing the amount of added grain refiner on grain size and morphology has been investigated for a range of hypoeutectic Al-Si alloys. The results show a transition in grain size at a silicon concentration of about 3 wt% in unrefined alloys; the grain size decreasing with silicon content before the transition, and increasing beyond the transition point. A change in morphology also occurs with increased silicon content. The addition of grain refiner leads to greater refinement for silicon contents below the transition point than for those contents above the transition point, while the transition point seems to remain unchanged. The slope of the grain size versus silicon content curve after the transition seems to be unaffected by the degree of grain refinement. The results are related to the competitive processes of nucleation and constitutional effects during growth and their impact on nucleation kinetics. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The phylogenetic relationships among members of the family Comamonadaceae and several unclassified strains were studied by direct sequencing of their PCR-amplified 16S rRNA genes. Based on the 16S rRNA gene sequence analysis, members of the family formed a coherent group. The closest relatives are species of the Rubrivivax sub-group: Leptothrix discophora, Ideonella dechloratans and Rubrivivax gelatinosus. The genus Hydrogenophaga formed two subclusters, as did the species of Acidovorax, whereas the five species of the genus [Aquaspirillum] were polyphyletic. Comamonas acidovorans was phylogenetically distant from the type species of Comamonas, Comamonas terrigena. On the basis of this work and previous studies, Comamonas acidovorans is removed from the genus Comamonas and renamed as Delftia acidovorans gen. nov., comb, nov. Descriptions of the new genus Delftia and of the type species Delftia acidovorans, for which the type strain is ATCC 15668(T), are presented.
Resumo:
An experimental programme has been undertaken to determine which of the grain formation mechanisms of equiaxed crystals are dominant in the solidification of Al-Si foundry alloys. Small ingots were cast from alloys of varying silicon concentration with and without gauze barriers, using different types of mould materials and different mould preheats. The results show that two mechanisms of grain nucleation are operating. The first is a wall mechanism where crystals are nucleated either on or near the mould wall owing to thermal undercooling. The second is a constitutional supercooling mechanism where nucleants are activated in the constitutionally undercooled zone ahead of the advancing interface. As a consequence, the grain size decreases with increasing silicon content. However a transition in the growth mode occurs once a critical degree of constitutional undercooling is exceeded. This change in growth is accompanied by an increase in grain size. The transition point can be shifted with respect to solute content by changing the casting conditions, and a mechanism is proposed to explain this effect. MST/4109
Resumo:
The mechanical properties of a typical sintered aluminium alloy (Al-4.4Cu-0.8Si-0.5Mg) have been improved by the simultaneous use of trace additions of Sn, high sintering temperatures and modified heat treatments. Tin increases densification, but the Sn concentration is limited to less than or equal to 0.1wt% because incipient melting occurs during solution treatment at higher Sn levels. A sintering temperature of 620 degrees C increases the liquid volume over that formed at the conventional 590 degrees C sintering temperature. However, the higher sintering temperature results in the formation of an embrittling phase which can be eliminated if solution treatment is incorporated into the sintering cycle (a modified TS heat treatment). These conditions produce a tensile strength of 375 MPa, an increase of nearly 20% over the unmodified alloy. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed loop A ligand binding domain; Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, I93A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, I-max values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile(93) and Asn(102), as contributing to the four-loop model of ligand binding.
Resumo:
The solution treatment stage of the T6 heat-treatment of Al-7%Si-Mg foundry alloys influences microstructural features such as Mg2Si dissolution, and eutectic silicon spheroidisation and coarsening. Microstructural and microanalytical studies have been conducted across a range of Sr-modified Al-7%Si alloys, with an Fe content of 0.12% and Mg contents ranging from 0.3-0.7wt%. Qualitative and quantitative metallography have shown that, in addition to the above changes, solution treatment also results in changes to the relative proportions of iron-containing intermetallic particles and that these changes are composition-dependent. While solution treatment causes a substantial transformation of pi phase to beta phase in low Mg alloys (0.3-0.4%), this change is not readily apparent at higher Mg levels (0.6-0.7%). The pi to beta transformation is accompanied by a release of Mg into the aluminum matrix over and above that which arises from the rapid dissolution of Mg2Si. Since the level of matrix Mg retained after quenching controls an alloy's subsequent precipitation hardening response, a proper understanding of this phase transformation is crucial if tensile properties are to be maximised.
Resumo:
First of all, we would like to clarify that the passive to active transition was determined not by using Solgasmix [1], but by combining thermodynamic equilibrium and mass balance for the oxidation of SiC under pure CO2 and pure CO. The model used in our paper [2]was an extension ofWagner’s model [3], in a similar way as Balat et al. [4] did for the oxidation of SiC in oxygen.
Resumo:
The dendrite coherency point of Al-Si-Cu alloys was determined by thermal analysis and rheological measurement methods by performing parallel measurements at two cooling rates for aluminum alloys across a wide range of silicon and copper contents. Contrary to previous findings, the two methods yield significantly different values for the fraction solid at the dendrite coherency point. This disparity is greatest for alloys of low solute concentration. The results from this study also contradict previously reported tl ends in the effect of cooling rate on the dendritic coherency point. Consideration of the results shows that thermal analysis is not a valid technique for the measurement of coherency. Analysis of the results from rheological testing indicates that silicon concentration has a dominant effect on grain size and dendritic morphology, independent of cooling rate and copper content, and thus is the factor that determines the fraction solid at dendrite coherency for Al-Si-Cu alloys.