10 resultados para Replicated Microarray Experiments

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local false discovery rate is provided for each gene, and it can be implemented so that the implied global false discovery rate is bounded as with the Benjamini-Hochberg methodology based on tail areas. The latter procedure is too conservative, unless it is modified according to the prior probability that a gene is not differentially expressed. An attractive feature of the mixture model approach is that it provides a framework for the estimation of this probability and its subsequent use in forming a decision rule. The rule can also be formed to take the false negative rate into account.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motivation: The clustering of gene profiles across some experimental conditions of interest contributes significantly to the elucidation of unknown gene function, the validation of gene discoveries and the interpretation of biological processes. However, this clustering problem is not straightforward as the profiles of the genes are not all independently distributed and the expression levels may have been obtained from an experimental design involving replicated arrays. Ignoring the dependence between the gene profiles and the structure of the replicated data can result in important sources of variability in the experiments being overlooked in the analysis, with the consequent possibility of misleading inferences being made. We propose a random-effects model that provides a unified approach to the clustering of genes with correlated expression levels measured in a wide variety of experimental situations. Our model is an extension of the normal mixture model to account for the correlations between the gene profiles and to enable covariate information to be incorporated into the clustering process. Hence the model is applicable to longitudinal studies with or without replication, for example, time-course experiments by using time as a covariate, and to cross-sectional experiments by using categorical covariates to represent the different experimental classes. Results: We show that our random-effects model can be fitted by maximum likelihood via the EM algorithm for which the E(expectation) and M(maximization) steps can be implemented in closed form. Hence our model can be fitted deterministically without the need for time-consuming Monte Carlo approximations. The effectiveness of our model-based procedure for the clustering of correlated gene profiles is demonstrated on three real datasets, representing typical microarray experimental designs, covering time-course, repeated-measurement and cross-sectional data. In these examples, relevant clusters of the genes are obtained, which are supported by existing gene-function annotation. A synthetic dataset is considered too.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper considers a model-based approach to the clustering of tissue samples of a very large number of genes from microarray experiments. It is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. Frequently in practice, there are also clinical data available on those cases on which the tissue samples have been obtained. Here we investigate how to use the clinical data in conjunction with the microarray gene expression data to cluster the tissue samples. We propose two mixture model-based approaches in which the number of components in the mixture model corresponds to the number of clusters to be imposed on the tissue samples. One approach specifies the components of the mixture model to be the conditional distributions of the microarray data given the clinical data with the mixing proportions also conditioned on the latter data. Another takes the components of the mixture model to represent the joint distributions of the clinical and microarray data. The approaches are demonstrated on some breast cancer data, as studied recently in van't Veer et al. (2002).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The establishment of the dormant state in meristems involves considerable physiological and metabolic alterations necessary for surviving unfavourable growth conditions. However, a global molecular analysis of dormancy in meristems has been hampered by the difficulty in isolating meristem cells. We used cryosectioning to isolate purified cambial meristem cells from the woody plant Populus tremula during active growth and dormancy. These samples were used to generate meristem-specific cDNA libraries and for cDNA microarray experiments to define the global transcriptional changes underlying cambial dormancy. The results indicate a significant reduction in the complexity of the cambial transcriptome in the dormant state. Although cell division is terminated in the dormant cambium, the cell cycle machinery appears to be maintained in a skeletal state as suggested by the continued presence of transcripts for several cell cycle regulators. The downregulation of PttPIN1 and PttPIN2 transcripts explains the reduced basipetal polar auxin transport during dormancy. The induction of a member of the SINA family of ubiquitin ligases implicated in auxin signalling indicates a potential mechanism for modulation of auxin sensitivity during cambial dormancy. The metabolic alterations during dormancy are mirrored in the induction of genes involved in starch breakdown and the glyoxysomal cycle. Interestingly, the induction of RGA1 like gene suggests modification of gibberellin signalling in cambial dormancy. The induction of genes such as poplar orthologues of FIE and HAP2 indicates a potential role for these global regulators of transcription in orchestrating extensive changes in gene expression during dormancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivation: An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. Results: By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the creation process of the Minimum Information Specification for In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE). Modeled after the existing minimum information specification for microarray data, we created a new specification for gene expression localization experiments, initially to facilitate data sharing within a consortium. After successful use within the consortium, the specification was circulated to members of the wider biomedical research community for comment and refinement. After a period of acquiring many new suggested requirements, it was necessary to enter a final phase of excluding those requirements that were deemed inappropriate as a minimum requirement for all experiments. The full specification will soon be published as a version 1.0 proposal to the community, upon which a more full discussion must take place so that the final specification may be achieved with the involvement of the whole community. This paper is part of the special issue of OMICS on data standards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In early generation variety trials, large numbers of new breeders' lines need to be compared, and usually there is little seed available for each new line. A so-called unreplicated trial has each new line on just one plot at a site, but includes several (often around five) replicated check or control (or standard) varieties. The total proportion of check plots is usually between 10% and 20%. The aim of the trial is to choose some good performing lines (usually around 1/3 of those tested) to go on for further testing, rather than precise estimation of their mean yield. Now that spatial analyses of data from field experiments are becoming more common, there is interest in an efficient layout of an experiment given a proposed spatial analysis. Some possible design criteria are discussed, and efficient layouts under spatial dependence are considered.