2 resultados para Remaining time

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse transit time (PTT) is a non-invasive measure of arterial compliance. It can be used to assess instantaneous blood pressure (BP) changes in continual cardiovascular measurement such as during overnight respiratory sleep studies. In these studies, periodic changes in limb position can occur randomly. However, little is known about their possible effects on PTT monitored on the various limbs. The objective of this study was to evaluate PTT differences on all four limbs during two positional changes (lowering and raising of a limb). Ten healthy adults (seven male) with a mean age of 27.0 years were recruited in this study. The results showed that the limb that underwent a positional change had significant (p < 0.05) local PTT differences when compared to its nominal baseline value, whereas PTT changes in the other remaining limbs were insignificant (p > 0.05). The mean PTT value measured from a vertically-raised limb increased by 42.7 ms, while it decreased by 28.1 ms with a half-lowered limb. The PTT differences observed during positional change can be contributed to by the complex interactions between hydrostatic pressure changes, autonomic and local autoregulation experienced in these limbs. Hence the findings herein suggest that PTT is able to reflect local circulatory responses despite changes in the position of other limbs. This can be useful in prolonged clinical observations where limb movements are expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue Doppler (TD) assessment of dysynchrony (DYS) is established in evaluation for bi-ventricular pacing. Time to regional minimal volume by real-time 3D echo (3D) has been applied to DYS. 3D offers simultaneous assessment of all segments and may limit errors in localization of maximum delay due to off-axis images.We compared TD and 3D for assessment of DYS. 27 patients with ischaemic cardiomyopathy (aged 60±11 years, 85% male) underwent TD with generation of regional velocity curves. The interval between QRS onset and maximal systolic velocity (TTV) was measured in 6 basal and 6 mid-cavity segments. Onthe same day,3Dwas performed and data analysed offline with Q-Lab software (Philips, Andover, MA). Using 12 analogous regional time-volume curves time to minimal volume (T3D)was calculated. The standard deviation (S.D.) between segments in TTV and T3D was calculated as a measure ofDYS. In 7 patients itwas not possible to measureT3D due to poor images. In the remaining 20, LV diastolic volume, systolic volume and EF were 128±35 ml, 68±23 ml and 46±13%, respectively. Mean TTV was less than mean T3D (150±33ms versus 348±54 ms; p < 0.01). The intrapatient range was 20–210ms for TTV and 0–410ms for T3D. Of 9 patients (45%) with significantDYS (S.D. TTV > 32 ms), S.D. T3D was 69±37ms compared to 48±34ms in those without DYS (p = ns). In DYS patients there was concordance of the most delayed segment in 4 (44%) cases.Therefore, different techniques for assessing DYS are not directly comparable. Specific cut-offs for DYS are needed for each technique.