86 resultados para Reliability in refrigeration systems

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reported experimental work on the systems Fe-Zn-O and Fe-Zn-Si-O in equilibrium with metallic iron is part of a wider research program that combines experimental and thermodynamic computer modeling techniques to characterize zinc/lead industrial slags and sinters in the system PbO-ZnO-SiO2-CaO-FeO-Fe2O3. Extensive experimental,investigations using high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA) were carried out. Special experimental; procedures were developed to enable accurate measurements in these ZnO-containing systems to be performed in equilibrium with metallic iron; The systems Fe-Zn-O and FeZn-Si-O were experimentally investigated in equilibrium with metallic iron in the temperature ranges 900 degreesC to 1200 degreesC (1173 to 1473 K) and from 1000 degreesC to 1350 degreesC (1273 to 1623 K), respectively. The liquidus surface in the system Fe-Zn-Si-O in equilibrium with metallic iron was characterized in the composition ranges 0 to 33 wt pet ZnO and 0 to 40 wt pet SiO2. The wustite (Fe,Zn)O, zincite (Zn,Fe)O, willemite (Zn,Fe)(2)SiO4, arid fayalite: (Fe,Zn)(2)SiO4 solid solutions in equilibrium with metallic iron were measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the finite element method to simulate the rock alteration and metamorphic process in hydrothermal systems. In particular, we consider the fluid-rock interaction problems in pore-fluid saturated porous rocks. Since the fluid rock interaction takes place at the contact interface between the pore-fluid and solid minerals, it is governed by the chemical reaction which usually takes place very slowly at this contact interface, from the geochemical point of view. Due to the relative slowness of the rate of the chemical reaction to the velocity of the pore-fluid flow in the hydrothermal system to be considered, there exists a retardation zone, in which the conventional static theory in geochemistry does not hold true. Since this issue is often overlooked by some purely numerical modellers, it is emphasized in this paper. The related results from a typical rock alteration and metamorphic problem in a hydrothermal system have shown not only the detailed rock alteration and metamorphic process, but also the size of the retardation zone in the hydrothermal system. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the finite element method to model the heat transfer phenomenon through permeable cracks in hydrothermal systems with upward throughflow. Since the finite element method is an approximate numerical method, the method must be validated before it is used to soh,e any new, kind of problem. However, the analytical solution, which can be used to validate the finite element method and other numerical methods, is rather limited in the literature, especially, for the problem considered here. Keeping this in mind, we have derived analytical solutions for the temperature distribution along the vertical axis of a crack in a fluid-saturated porous layer. After the finite element method is validated by comparing the numerical solution with the analytical solution for the same benchmark problem, it is used to investigate the pore-fluid flow and heat transfer in layered hydrothermal systems with vertical permeable cracks. The related analytical and numerical results have demonstrated that vertical cracks are effective and efficient members to transfer heat energy from the bottom section to the top section in hydrothermal systems with upward throughflow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conduct a theoretical analysis of steady-state heat transfer problems through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. In particular, we derive analytical solutions for both the far field and near field of the system. In order to investigate the contribution of the forced advection to the total temperature of the system, two concepts, namely the critical Peclet number and the critical permeability of the system, have been presented and discussed in this paper. The analytical solution for the far field of the system indicates that if the pore-fluid pressure gradient in the crust is lithostatic, the critical permeability of the system can be used to determine whether or not the contribution of the forced advection to the total temperature of the system is negligible. Otherwise, the critical Peclet number should be used. For a crust of moderate thickness, the critical permeability is of the order of magnitude of 10(-20) m(2), under which heat conduction is the overwhelming mechanism to transfer heat energy, even though the pore-fluid pressure gradient in the crust is lithostatic. Furthermore, the lower bound analytical solution for the near field of the system demonstrates that the permeable vertical cracks in the middle crust can efficiently transfer heat energy from the lower crust to the upper crust of the Earth. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the problem of establishing a formal relationship of abstraction and refinement between abstract enterprise models and the concrete information systems which implement them. It introduces and justifies a number of reasonableness requirements, which turn out to justify the use of category theoretic concepts, particularly fibrations, to precisely specify a semantics for enterprise models which enables them to be considered as abstractions of the conceptual models from which the implementing information systems are built. The category-theoretic concepts are developed towards the problem of testing whether a system satisfies the fibration axioms, and are applied to case studies to demonstrate their practicability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical conductivity versus dopant ionic radius studies in zirconia- and ceria-based, solid oxide fuel cell (SOFC) electrolyte systems have shown that oxygen-ion conductivity is highest when the host and dopant ions are similar in size [J. Am. Ceram. Soc. 48 (1965) 286; Solid State Ionics 37 (1989) 67; Solid State Ionics 5 (1981) 547]. Under these conditions, it is thought that the conduction paths within the crystal lattice become less distorted [Solid State Ionics 8 (1983) 201]. In this study, binary ZrO2-M2O3 unit cells were expanded, via the partial substitution of Ce+4 for Zr+4 into the lattice, in an attempt to identify new, ternary, zirconia/ceria-based electrolyte systems with enhanced electrical conductivity. The compositions Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Yb, Sc) were prepared using traditional solid state techniques. Bulk phase characterisation and precise lattice parameter measurements were performed with X-ray diffraction techniques. Four-probe DC conductivity measurements between 400 and 900 degreesC showed that the dopant-ion radius influenced electrical conductivity. The conductivity versus dopant-ion radius trends previously observed in zirconia-based, binary systems are clearly apparent in the ternary systems investigated in this study. The addition of ceria was found to have a negative influence on the electrical conductivity over the temperature range 400-900 degreesC. It is suggested that distortion of the oxygen-ion conduction path by the presence of the larger M+3 and Ce+4 species (relative to Zr+4) is the reason for the decreasing electrical conductivity as a function of increasing dopant size and ceria addition, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.