3 resultados para Relative growth ratio
em University of Queensland eSpace - Australia
Resumo:
The ability to track large numbers of individuals and families is a key determinant of the power and precision of breeding programs, including the capacity to quantify interactions between genotypes and their environment. Until recently, most family based selective breeding programs for shrimp, and other highly fecund aquaculture species, have been restricted by the number of animals that can be physically tagged and individually selected. Advances in the development of molecular markers, such as microsatellite loci, are now providing the means to track large numbers of individuals and families in commercial production systems. In this study microsatellites, coupled with DNA parentage analyses, were used to determine the relative performance of 22 families of R japonicus reared in commercial production ponds. In the experimental design 6000 post-larvae from each of 22 families, whose maternal parents had been genotyped at 8 microsatellite loci, were stocked into each of four I ha ponds. After 6 months the ponds were harvested and a total of 6000 individuals were randomly weighed from each pond. Mean wet weight of the shrimp from one pond was significantly lower than that of the other three ponds demonstrating a possible pond effect on growth rate. The representation of families in the top 10% of each pond's weight distribution was then determined by randomly genotyping up to 300 individuals from this upper weight class. Parentage analyses based on individual genotypic data demonstrated that some families were over-represented in the top 10% in all ponds, while others were under-represented due to slower growth rates. The results also revealed some weak, but significant, male genotype x environment (G x E) interactions in the expression of shrimp growth for some families. This indicates that G x E effects may need to be factored into future R japonicus selective breeding programs. This study demonstrated the utility of DNA parentage analyses for tracking individual family performance in communally stocked shrimp pond populations and, its application to examining G x E effects on trait expression under commercial culture conditions. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper presents an overlapping generations model with physical and human capital and income inequality. It shows that inequality impedes output growth by directly harming capital accumulation and indirectly raising the ratio of physical to human capital. The convergence speed of output growth equals the lower of the convergence speeds of the relative capital ratio and inequality, and varies with initial states. Among economies with the same balanced growth rate but different initial income levels, the ranking of income can switch in favor of those starting from low inequality and a low ratio of physical to human capital, particularly if the growth rate converges slowly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Oilseed rape (Brassica napus) is sensitive to low boron (B) supply, and its growth response to B may be influenced by soil temperature. To test the relationship between B and temperature, oilseed rape (cv. Hyola 42) seedlings were grown at 10 degrees C (low) root zone temperature (RZT) with B supply from deficient to adequate B levels until growth of low B plants just began to slow down. Half of the pots were then transferred to 20 degrees C (warm) RZT for 11 days before they were moved back to 10 degrees C RZT for the final 4 days. Both plant dry mass and B uptake increased after plants were exposed to warm RZT. However, plant B deficiency was exacerbated by warm RZT in low B plants because of increased relative growth rate and shoot-root ratio without a commensurate increase in B uptake rate. It is concluded that RZT above the critical threshold for chilling injury in oilseed rape can nevertheless affect the incidence of B deficiency by altering shoot-root ratio and hence the balance between shoot B demand and B uptake.