12 resultados para Regular operators, basic elementary operators, Banach lattices
em University of Queensland eSpace - Australia
Resumo:
A central feature in the Hilbert space formulation of classical mechanics is the quantisation of classical Lionville densities, leading to what may be termed Groenewold operators. We investigate the spectra of the Groenewold operators that correspond to Gaussian and to certain uniform Lionville densities. We show that when the classical coordinate-momentum uncertainty product falls below Heisenberg's limit, the Groenewold operators in the Gaussian case develop negative eigenvalues and eigenvalues larger than 1. However, in the uniform case, negative eigenvalues are shown to persist for arbitrarily large values of the classical uncertainty product.
Resumo:
Sports venues are in a position to potentially influence the safety practices of their patrons. This study examined the knowledge, beliefs and attitudes of venue operators that could influence the use of protective eyewear by squash players. A 50% random sample of all private and public squash venues affiliated with the Victorian Squash Federation in metropolitan Melbourne was selected. Face-to-face interviews were conducted with 15 squash venue operators during August 2001. Interviews were transcribed and content and thematic analyses were performed. The content of the interviews covered five topics: (1) overall injury risk perception, (2) eye injury occurrence, (3) knowledge, behaviors, attitudes and beliefs associated with protective eyewear, (4) compulsory protective eyewear and (5) availability of protective eyewear at venues. Venue operators were mainly concerned with the severe nature of eye injuries, rather than the relatively low incidence of these injuries. Some venue operators believed that players should wear any eyewear, rather than none at all, and believed that more players should use protective eyewear. Generally, they did not believe that players with higher levels of experience and expertise needed to wear protective eyewear when playing. Only six venues had at least one type of eyewear available for players to hire or borrow or to purchase. Operators expressed a desire to be informed about correct protective eyewear. Appropriate protective eyewear is not readily available at squash venues. Better-informed venue operators may be more likely to provide suitable protective eyewear.
Resumo:
In this paper, we introduce and study a new system of variational inclusions involving (H, eta)-monotone operators in Hilbert space. Using the resolvent operator associated with (H, eta)monotone operators, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We develop results for bifurcation from the principal eigenvalue for certain operators based on the p-Laplacian and containing a superlinear nonlinearity with a critical Sobolev exponent. The main result concerns an asymptotic estimate of the rate at which the solution branch departs from the eigenspace. The method can also be applied for nonpotential operators.
Resumo:
We apply a three-dimensional approach to describe a new parametrization of the L-operators for the two-dimensional Bazhanov-Stroganov (BS) integrable spin model related to the chiral Potts model. This parametrization is based on the solution of the associated classical discrete integrable system. Using a three-dimensional vertex satisfying a modified tetrahedron equation, we construct an operator which generalizes the BS quantum intertwining matrix S. This operator describes the isospectral deformations of the integrable BS model.
Resumo:
The goal of this paper is to study the multiplicity of positive solutions of a class of quasilinear elliptic equations. Based on the mountain pass theorems and sub-and supersolutions argument for p-Laplacian operators, under suitable conditions on nonlinearity f (x, s), we show the following problem: -Delta(p)u = lambda f(x,u) in Omega, u/(partial derivative Omega) = 0, where Omega is a bounded open subset of R-N, N >= 2, with smooth boundary, lambda is a positive parameter and Delta(p) is the p-Laplacian operator with p > 1, possesses at least two positive solutions for large lambda.
Resumo:
In the absence of an external frame of reference-i.e., in background independent theories such as general relativity-physical degrees of freedom must describe relations between systems. Using a simple model, we investigate how such a relational quantum theory naturally arises by promoting reference systems to the status of dynamical entities. Our goal is twofold. First, we demonstrate using elementary quantum theory how any quantum mechanical experiment admits a purely relational description at a fundamental. Second, we describe how the original non-relational theory approximately emerges from the fully relational theory when reference systems become semi-classical. Our technique is motivated by a Bayesian approach to quantum mechanics, and relies on the noiseless subsystem method of quantum information science used to protect quantum states against undesired noise. The relational theory naturally predicts a fundamental decoherence mechanism, so an arrow of time emerges from a time-symmetric theory. Moreover, our model circumvents the problem of the collapse of the wave packet as the probability interpretation is only ever applied to diagonal density operators. Finally, the physical states of the relational theory can be described in terms of spin networks introduced by Penrose as a combinatorial description of geometry, and widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up approach (starting from the semiclassical limit to derive the fully relational quantum theory) may offer interesting insights on the low energy limit of quantum gravity.