28 resultados para Regression imputation
em University of Queensland eSpace - Australia
Resumo:
Objectives: To estimate differences in self-rated health by mode of administration and to assess the value of multiple imputation to make self-rated health comparable for telephone and mail. Methods: In 1996, Survey 1 of the Australian Longitudinal Study on Women's Health was answered by mail. In 1998, 706 and 11,595 mid-age women answered Survey 2 by telephone and mail respectively. Self-rated health was measured by the physical and mental health scores of the SF-36. Mean change in SF-36 scores between Surveys 1 and 2 were compared for telephone and mail respondents to Survey 2, before and after adjustment for socio-demographic and health characteristics. Missing values and SF-36 scores for telephone respondents at Survey 2 were imputed from SF-36 mail responses and telephone and mail responses to socio-demographic and health questions. Results: At Survey 2, self-rated health improved for telephone respondents but not mail respondents. After adjustment, mean changes in physical health and mental health scores remained higher (0.4 and 1.6 respectively) for telephone respondents compared with mail respondents (-1.2 and 0.1 respectively). Multiple imputation yielded adjusted changes in SF-36 scores that were similar for telephone and mail respondents. Conclusions and Implications: The effect of mode of administration on the change in mental health is important given that a difference of two points in SF-36 scores is accepted as clinically meaningful. Health evaluators should be aware of and adjust for the effects of mode of administration on self-rated health. Multiple imputation is one method that may be used to adjust SF-36 scores for mode of administration bias.
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The modelling of inpatient length of stay (LOS) has important implications in health care studies. Finite mixture distributions are usually used to model the heterogeneous LOS distribution, due to a certain proportion of patients sustaining-a longer stay. However, the morbidity data are collected from hospitals, observations clustered within the same hospital are often correlated. The generalized linear mixed model approach is adopted to accommodate the inherent correlation via unobservable random effects. An EM algorithm is developed to obtain residual maximum quasi-likelihood estimation. The proposed hierarchical mixture regression approach enables the identification and assessment of factors influencing the long-stay proportion and the LOS for the long-stay patient subgroup. A neonatal LOS data set is used for illustration, (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.
Resumo:
A dividend imputation tax system provides shareholders with a credit (for corporate tax paid) that can be used to offset personal tax on dividend income. This paper shows how to infer the value of imputation tax credits from the prices of derivative securities that are unique to Australian retail markets. We also test whether a tax law amendment that was designed to prevent the trading of imputation credits affected their economic value. Before the amendment, tax credits were worth up to 50% of face value in large, high-yielding companies, but Subsequently it is difficult to detect any value at all. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this article we investigate the asymptotic and finite-sample properties of predictors of regression models with autocorrelated errors. We prove new theorems associated with the predictive efficiency of generalized least squares (GLS) and incorrectly structured GLS predictors. We also establish the form associated with their predictive mean squared errors as well as the magnitude of these errors relative to each other and to those generated from the ordinary least squares (OLS) predictor. A large simulation study is used to evaluate the finite-sample performance of forecasts generated from models using different corrections for the serial correlation.
Resumo:
Background and Objective: To examine if commonly recommended assumptions for multivariable logistic regression are addressed in two major epidemiological journals. Methods: Ninety-nine articles from the Journal of Clinical Epidemiology and the American Journal of Epidemiology were surveyed for 10 criteria: six dealing with computation and four with reporting multivariable logistic regression results. Results: Three of the 10 criteria were addressed in 50% or more of the articles. Statistical significance testing or confidence intervals were reported in all articles. Methods for selecting independent variables were described in 82%, and specific procedures used to generate the models were discussed in 65%. Fewer than 50% of the articles indicated if interactions were tested or met the recommended events per independent variable ratio of 10: 1. Fewer than 20% of the articles described conformity to a linear gradient, examined collinearity, reported information on validation procedures, goodness-of-fit, discrimination statistics, or provided complete information on variable coding. There was no significant difference (P >.05) in the proportion of articles meeting the criteria across the two journals. Conclusion: Articles reviewed frequently did not report commonly recommended assumptions for using multivariable logistic regression. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In large epidemiological studies missing data can be a problem, especially if information is sought on a sensitive topic or when a composite measure is calculated from several variables each affected by missing values. Multiple imputation is the method of choice for 'filling in' missing data based on associations among variables. Using an example about body mass index from the Australian Longitudinal Study on Women's Health, we identify a subset of variables that are particularly useful for imputing values for the target variables. Then we illustrate two uses of multiple imputation. The first is to examine and correct for bias when data are not missing completely at random. The second is to impute missing values for an important covariate; in this case omission from the imputation process of variables to be used in the analysis may introduce bias. We conclude with several recommendations for handling issues of missing data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.
Resumo:
Background Regression to the mean (RTM) is a statistical phenomenon that can make natural variation in repeated data look like real change. It happens when unusually large or small measurements tend to be followed by measurements that are closer to the mean. Methods We give some examples of the phenomenon, and discuss methods to overcome it at the design and analysis stages of a study. Results The effect of RTM in a sample becomes more noticeable with increasing measurement error and when follow-up measurements are only examined on a sub-sample selected using a baseline value. Conclusions RTM is a ubiquitous phenomenon in repeated data and should always be considered as a possible cause of an observed change. Its effect can be alleviated through better study design and use of suitable statistical methods.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
Cholesterol is a major component of atherosclerotic plaques. Cholesterol accumulation within the arterial intima and atherosclerotic plaques is determined by the difference of cellular cholesterol synthesis and/or influx from apo B-containing lipoproteins and cholesterol efflux. In humans, apo A-I Milano infusion has led to rapid regression of atherosclerosis in coronary arteries. We hypothesised that a multifunctional plasma delipidation process (PDP) would lead to rapid regression of experimental atherosclerosis and probably impact on adipose tissue lipids. In hyperlipidemic animals, the plasma concentrations of cholesterol, triglyceride and phospholipid were, respectively, 6-, 157-, and 18-fold higher than control animals, which consequently resulted in atherosclerosis. PDP consisted of delipidation of plasma with a mixture of butanol-diisopropyl ether (DIPE). PDP removed considerably more lipid from the hyperlipidemic animals than in normolipidemic animals. PDP treatment of hyperlipidemic animals markedly reduced intensity of lipid staining materials in the arterial wall and led to dramatic reduction of lipid in the adipose tissue. Five PDP treatments increased apolipoprotein A1 concentrations in all animals. Biochemical and hematological parameters were unaffected during PDP treatment. These results show that five PDP treatments led to marked reduction in avian atherosclerosis and removal of lipid from adipose tissue. PDP is a highly effective method for rapid regression of atherosclerosis.
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.