9 resultados para Reed Elsevier Inc v Muchnick

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various mesoporous catalysts with vanadium loadings between 0.5 and 6 V wt.% and surface areas around 1300 m(2)/g were synthesized using the isomorphous substitution (IS) and molecular designed dispersion (MDD) techniques. Their catalytic properties were tested using toluene as a model VOC in a fixed bed reactor at temperatures between 300 and 550 degrees C. It was found that during the oxidation of toluene, over V-HMS synthesized via IS, conversion of toluene mainly results in carbon oxides, benzene, benzaldehyde and water. Total conversion is greatly improved when the vanadium content is increased from around 1.5 to 3.0 wt.%, but an increase in the textural porosity (V-TEX/V-MESO) from 0.3 to 0.6 had no discernable effect on the conversion. This can be explained by the fact that a V-TEX/V-MESO as low as 0.3 is sufficient to facilitate the access of toluene into the framework confined mesopores without any molecular transport limitations. However, when using V-HMS synthesized by MDD, conversion of toluene is greatly improved when the V-TEX/ V-MESO ratio is increased from 0.1 to 0.6. This is because the diffusion limitations are minimized by this increase. V-HMS synthesized via MDD does not exhibit selectivity to benzaldehyde, favoring total oxidation to CO and CO2. This different oxidation mechanism can be explained in terms of location, accessibility and number of active species on the surface of the HMS support. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Many guidelines advocate measurement of total or low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglycerides (TG) to determine treatment recommendations for preventing coronary heart disease (CHD) and cardiovascular disease (CVD). This analysis is a comparison of lipid variables as predictors of cardiovascular disease. METHODS: Hazard ratios for coronary and cardiovascular deaths by fourths of total cholesterol (TC), LDL, HDL, TG, non-HDL, TC/HDL, and TG/HDL values, and for a one standard deviation change in these variables, were derived in an individual participant data meta-analysis of 32 cohort studies conducted in the Asia-Pacific region. The predictive value of each lipid variable was assessed using the likelihood ratio statistic. RESULTS: Adjusting for confounders and regression dilution, each lipid variable had a positive (negative for HDL) log-linear association with fatal CHD and CVD. Individuals in the highest fourth of each lipid variable had approximately twice the risk of CHD compared with those with lowest levels. TG and HDL were each better predictors of CHD and CVD risk compared with TC alone, with test statistics similar to TC/HDL and TG/HDL ratios. Calculated LDL was a relatively poor predictor. CONCLUSIONS: While LDL reduction remains the main target of intervention for lipid-lowering, these data support the potential use of TG or lipid ratios for CHD risk prediction. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5 x 10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amongst the infectious diseases that threaten equine health, herpesviral infections remain a world wide cause of serious morbidity and mortality. Equine herpesvirus-1 infection is the most important pathogen, causing an array of disorders including epidemic respiratory disease abortion, neonatal foal death, myeloencephalopathy and chorioretinopathy. Despite intense scientific investigation, extensive use of vaccination, and established codes of practice for control of disease outbreaks, infection and disease remain common. While equine herpesvirus-1 infection remains a daunting challenge for immunoprophylaxis, many critical advances in equine immunology have resulted in studies of this virus, particularly related to MHC-restricted cytotoxicity in the horse. A workshop was convened in San Gimignano, Tuscany, Italy in June 2004, to bring together clinical and basic researchers in the field of equine herpesvirus-1 study to discuss the latest advances and future prospects for improving our under-standing of these diseases, and equine immunity to herpesviral infection. This report highlights the new information that was the focus of this workshop, and is intended to summarize this material and identify the critical questions in the field. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cross between two different races (race 7 x race 25) of the soybean root and stem rot pathogen Phytophthora sojae was analyzed to characterize the genomic region flanking two cosegregating avirulence genes, Anur4 and Anur6. Both genes cosegregated in the ratio of 82:17 (avirulent:virulent) in an F-2 population, suggestive of a single locus controlling both phenotypes. A chromosome walk was commenced from RAPD marker OPE7.1C, 2.0 cM distant from the Anur4/6 locus. Three overlapping cosmids were isolated which included genetic markers that flank the Anur4/6 locus. The chromosome walk spanned a physical distance of 67 kb which represented a genetic map distance of 22.3cM, an average recombination frequency of 3.0kb/cM and 11.7-fold greater than the predicted average recombination frequency of 35.3 kb/cM for the entire P. sojae genome. Six genes (cDNA clones) expressed from the Anur4/6 genomic region encompassed by the cosmid contig were identified. Single nucleotide polymorphisms and restriction fragment length polymorphisms showed these six genes were closely linked to the Anur4/6 locus. Physical mapping of the cDNA clones within the cosmid contig made it possible to deduce the precise linkage order of the cDNAs. None of the six cDNA clones appear to be candidates for Anur4/6. We conclude that two of these cDNA clones flank a physical region of approximately 24 kb and 4.3 cM that appears to include the Anur4/6 locus. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new questionnaire, the Maternal Mental State Input Inventory (MMSII) was created to measure mothers' preferences for introducing and elaborating on mental states in conversation with their young children. In two studies, the questionnaire was given to mothers of young children, and the children's theory of mind (ToM) development was assessed with standard tasks. In both studies, the questionnaire exhibited good internal reliability, and significant correlations emerged between mothers' self-reported preferences for elaborated, explanatory talk about the mental states and children's theory of mind performance. Further, mothers' conversational preferences, as measured by the MMSII, were the best predictors of children's theory of mind development when relevant control variables were included in the analyses. These results converge with naturalistic observational research that has demonstrated links between mothers' conversational styles and their children's theory of mind. They go further in suggesting that mothers' tendencies toward elaborated, explanatory talk about a range of mental states is particularly beneficial to children's theory of mind development. (C) 2003 Elsevier Inc. All rights reserved.