5 resultados para Redes de distribuição, Árvore de Steiner, Coleta de prêmios
em University of Queensland eSpace - Australia
Resumo:
A minimal defining set of a Steiner triple system on a points (STS(v)) is a partial Steiner triple system contained in only this STS(v), and such that any of its proper subsets is contained in at least two distinct STS(v)s. We consider the standard doubling and tripling constructions for STS(2v + 1) and STS(3v) from STS(v) and show how minimal defining sets of an STS(v) gives rise to minimal defining sets in the larger systems. We use this to construct some new families of defining sets. For example, for Steiner triple systems on, 3" points; we construct minimal defining sets of volumes varying by as much as 7(n-/-).
Resumo:
In this paper we focus on the representation of Steiner trades of volume less than or equal to nine and identify those for which the associated partial latin square can be decomposed into six disjoint latin interchanges.
Resumo:
A well-known, and unresolved, conjecture states that every partial Steiner triple system of order u can be embedded in a Steiner triple system of order v for all v equivalent to 1 or 3 (mod 6), v greater than or equal to 2u + 1. However, some partial Steiner triple systems of order u can be embedded in Steiner triple systems of order v < 2u + 1. A more general conjecture that considers these small embeddings is presented and verified for some cases. (C) 2002 Wiley Periodicals, Inc.
Resumo:
For a design D, define spec(D) = {\M\ \ M is a minimal defining set of D} to be the spectrum of minimal defining sets of D. In this note we give bounds on the size of an element in spec(D) when D is a Steiner system. We also show that the spectrum of minimal defining sets of the Steiner triple system given by the points and lines of PG(3,2) equals {16,17,18,19,20,21,22}, and point out some open questions concerning the Steiner triple systems associated with PG(n, 2) in general. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We describe a direct method of partitioning the 840 Steiner triple systems of order 9 into 120 large sets. The method produces partitions in which all of the large sets are isomorphic and we apply the method to each of the two non-isomorphic large sets of STS(9).