43 resultados para Recursive Partitioning and Regression Trees (RPART)
em University of Queensland eSpace - Australia
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
Partitioned Bremer support (PBS) is a valuable means of assessing congruence in combined data sets, but some aspects require clarification. When more than one equally parsimonious tree is found during the constrained search for trees lacking the node of interest, averaging PBS for each data set across these trees can conceal conflict, and PBS should ideally be examined for each constrained tree. Similarly, when multiple most parsimonious trees (MPTs) are generated during analysis of the combined data, PBS is usually calculated on the consensus tree. However, extra information can be obtained if PBS is calculated on each of the MPTs or even suboptimal trees. (C) 2002 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Resumo:
Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Areas of the landscape that are priorities for conservation should be those that are both vulnerable to threatening processes and that if lost or degraded, will result in conservation targets being compromised. While much attention is directed towards understanding the patterns of biodiversity, much less is given to determining the areas of the landscape most vulnerable to threats. We assessed the relative vulnerability of remaining areas of native forest to conversion to plantations in the ecologically significant temperate rainforest region of south central Chile. The area of the study region is 4.2 million ha and the extent of plantations is approximately 200000 ha. First, the spatial distribution of native forest conversion to plantations was determined. The variables related to the spatial distribution of this threatening process were identified through the development of a classification tree and the generation of a multivariate. spatially explicit, statistical model. The model of native forest conversion explained 43% of the deviance and the discrimination ability of the model was high. Predictions were made of where native forest conversion is likely to occur in the future. Due to patterns of climate, topography, soils and proximity to infrastructure and towns, remaining forest areas differ in their relative risk of being converted to plantations. Another factor that may increase the vulnerability of remaining native forest in a subset of the study region is the proposed construction of a highway. We found that 90% of the area of existing plantations within this region is within 2.5 km of roads. When the predictions of native forest conversion were recalculated accounting for the construction of this highway, it was found that: approximately 27000 ha of native forest had an increased probability of conversion. The areas of native forest identified to be vulnerable to conversion are outside of the existing reserve network. (C) 2004 Elsevier Ltd. All tights reserved.
Resumo:
Risk assessment systems for introduced species are being developed and applied globally, but methods for rigorously evaluating them are still in their infancy. We explore classification and regression tree models as an alternative to the current Australian Weed Risk Assessment system, and demonstrate how the performance of screening tests for unwanted alien species may be quantitatively compared using receiver operating characteristic (ROC) curve analysis. The optimal classification tree model for predicting weediness included just four out of a possible 44 attributes of introduced plants examined, namely: (i) intentional human dispersal of propagules; (ii) evidence of naturalization beyond native range; (iii) evidence of being a weed elsewhere; and (iv) a high level of domestication. Intentional human dispersal of propagules in combination with evidence of naturalization beyond a plants native range led to the strongest prediction of weediness. A high level of domestication in combination with no evidence of naturalization mitigated the likelihood of an introduced plant becoming a weed resulting from intentional human dispersal of propagules. Unlikely intentional human dispersal of propagules combined with no evidence of being a weed elsewhere led to the lowest predicted probability of weediness. The failure to include intrinsic plant attributes in the model suggests that either these attributes are not useful general predictors of weediness, or data and analysis were inadequate to elucidate the underlying relationship(s). This concurs with the historical pessimism that we will ever be able to accurately predict invasive plants. Given the apparent importance of propagule pressure (the number of individuals of an species released), future attempts at evaluating screening model performance for identifying unwanted plants need to account for propagule pressure when collating and/or analysing datasets. The classification tree had a cross-validated sensitivity of 93.6% and specificity of 36.7%. Based on the area under the ROC curve, the performance of the classification tree in correctly classifying plants as weeds or non-weeds was slightly inferior (Area under ROC curve = 0.83 +/- 0.021 (+/- SE)) to that of the current risk assessment system in use (Area under ROC curve = 0.89 +/- 0.018 (+/- SE)), although requires many fewer questions to be answered.
Resumo:
We investigated some of the factors that may lead to outbreaks of pink wax scale, Ceroplastes rubens Maskell, on umbrella trees, Schefflera actinophylla (Endl.). Estimates of birth and death rates of pink wax scale were high and variable within and among trees; variation in these rates was not related to scale density. Adult fecundity correlated significantly but weakly with adult test length; mean fecundity was 292 eggs per female with a range of 5-1178. Adult test length and its variance decreased weakly with increasing density. Field experiments showed that mortality of C. rubens is greatest during the first 24 hours after hatching when approximately half disappear. The rate of loss decreases over time with 0.3% of initial motile first-instar nymphs surviving to maturity. Rates of loss varied significantly between trees, indicating that some trees are more suitable for scale colonisation and survival.
Resumo:
An expanding human population and associated demands for goods and services continues to exert an increasing pressure on ecological systems. Although the rate of expansion of agricultural lands has slowed since 1960, rapid deforestation still occurs in many tropical countries, including Colombia. However, the location and extent of deforestation and associated ecological impacts within tropical countries is often not well known. The primary aim of this study was to obtain an understanding of the spatial patterns of forest conversion for agricultural land uses in Colombia. We modeled native forest conversion in Colombia at regional and national-levels using logistic regression and classification trees. We investigated the impact of ignoring the regional variability of model parameters, and identified biophysical and socioeconomic factors that best explain the current spatial pattern and inter-regional variation in forest cover. We validated our predictions for the Amazon region using MODIS satellite imagery. The regional-level classification tree that accounted for regional heterogeneity had the greatest discrimination ability. Factors related to accessibility (distance to roads and towns) were related to the presence of forest cover, although this relationship varied regionally. In order to identify areas with a high risk of deforestation, we used predictions from the best model, refined by areas with rural population growth rates of > 2%. We ranked forest ecosystem types in terms of levels of threat of conversion. Our results provide useful inputs to planning for biodiversity conservation in Colombia, by identifying areas and ecosystem types that are vulnerable to deforestation. Several of the predicted deforestation hotspots coincide with areas that are outstanding in terms of biodiversity value.
Resumo:
1. Many species of delphinids co-occur in space and time. However, little is known of their ecological interactions and the underlying mechanisms that mediate their coexistence. 2. Snubfin Orcaella heinsohni, and Indo-Pacific humpback dolphins Sousa chinensis, live in sympatry throughout most of their range in Australian waters. I conducted boat-based surveys in Cleveland Bay, north-east Queensland, to collect data on the space and habitat use of both species. Using Geographic Information Systems, kernel methods and Euclidean distances I investigated interspecific differences in their space use patterns, behaviour and habitat preferences. 3. Core areas of use (50% kernel range) for both species were located close to river mouths and modified habitat such as dredged channels and breakwaters close to the Port of Townsville. Foraging and travelling activities were the dominant behavioural activities of snubfin and humpback dolphins within and outside their core areas. 4. Their representative ranges (95% kernel range) overlapped considerably, with shared areas showing strong concordance in the space use by both species. Nevertheless, snubfin dolphins preferred slightly shallower (1-2 m) waters than humpback dolphins (2-5 m). Additionally, shallow areas with seagrass ranked high in the habitat preferences of snubfin dolphins, whereas humpback dolphins favoured dredged channels. 5. Slight differences in habitat preferences appear to be one of the principal factors maintaining the coexistence of snubfin and humpback dolphins. I suggest diet partitioning and interspecific aggression as the major forces determining habitat selection in these sympatric species.
Resumo:
The loss and fragmentation of forest habitats by human land use are recognised as important factors influencing the decline of forest-dependent fauna. Mammal species that are dependent upon forest habitats are particularly sensitive to habitat loss and fragmentation because they have highly specific habitat requirements, and in many cases have limited ability to move through and utilise the land use matrix. We addressed this problem using a case study of the koala (Phascolarctos cinereus) surveyed in a fragmented rural-urban landscape in southeast Queensland, Australia. We applied a logistic modelling and hierarchical partitioning analysis to determine the importance of forest area and its configuration relative to site (local) and patch-level habitat variables. After taking into account spatial auto-correlation and the year of survey, we found koala occurrence increased with the area of all forest habitats, habitat patch size and the proportion of primary Eucalyptus tree species; and decreased with mean nearest neighbour distance between forest patches, the density of forest patches, and the density of sealed roads. The difference between the effect of habitat area and configuration was not as strong as theory predicts, with the configuration of remnant forest becoming increasingly important as the area of forest habitat declines. We conclude that the area of forest, its configuration across the landscape, as well as the land use matrix, are important determinants of koala occurrence, and that habitat configuration should not be overlooked in the conservation of forest-dependent mammals, such as the koala. We highlight the implications of these findings for koala conservation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
An analysis of the relationships of the major arthropod groups Was undertaken using mitochondrial genome data to examine the hypotheses that Hexapoda is polyphyletic and that Collembola is more closely related to branchiopod crustaceans than insects. We sought to examine the sensitivity of this relationship to outgroup choice, data treatment. gene choice and optimality criteria used in the phylogenetic analysis of mitochondrial genome data. Additionally we sequenced the mitochondrial genome of ail archaeognathan, Nesomachilis australica. to improve taxon selection in the apterygote insects, a group poorly represented in previous mitochondrial phylogenies. The sister group of the Collembola was rarely resolved in our analyses with a significant level of support. The use of different outgroups (myriapods, nematodes, or annelids + mollusks) resulted in many different placements of Collembola. The way in which the dataset was coded for analysis (DNA, DNA with the exclusion of third codon position and as amino acids) also had marked affects on tree topology. We found that nodal Support was spread evenly throughout the 13 mitochondrial genes and the exclusion of genes resulted in significantly less resolution in the inferred trees. Optimality criteria had a much lesser effect on topology than the preceding factors; parsimony and Bayesian trees for a given data set and treatment were quite similar. We therefore conclude that the relationships of the extant arthropod groups as inferred by mitochondrial genomes are highly vulnerable to outgroup choice, data treatment and gene choice, and no consistent alternative hypothesis of Collembola's relationships is supported. Pending the resolution of these identified problems with the application of mitogenomic data to basal arthropod relationships, it is difficult to justify the rejection of hexapod monophyly, which is well supported on morphological grounds. (c) The Willi Hennig Society 2004.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.