20 resultados para Rectangular Pressure Pulse
em University of Queensland eSpace - Australia
Resumo:
An increase in left ventricular mass (LVM) occurs in the presence of type 2 diabetes, apparently independent of hypertension (1), but the determinants of this process are unknown. Brachial blood pressure is not representative of that at the ascending aorta (2) because the pressure wave is amplified from central to peripheral arteries. Central blood pressure is probably more clinically important since local pulsatile pressure determines adverse arterial and myocardial remodeling (3,4). Thus, an inaccurate assessment of the contribution of arterial blood pressure to LVM may occur if only brachial blood pressure is taken into consideration. In this study we sought the contribution of central blood pressure (and other interactive factors known to affect wave reflection, e.g., glycemic control and total arterial compliance) to LVM in patients with type 2 diabetes.
Resumo:
Study objectives: Currently, esophageal pressure monitoring is the "gold standard" measure for inspiratory efforts, hut its invasive nature necessitates a better tolerated and noninvasive method to be used on children. Pulse transit time (PTT) has demonstrated its potential as a noninvasive surrogate marker for inspiratory efforts. The principle velocity determinant of PTT is the change in stiffness of the arterial wall and is inversely correlated to BP. Moreover, PTT has been shown to identify changes in inspiratory effort via the BP fluctuations induced by negative pleural pressure swings. In this study, the capability of PTT to classify respiratory, events during sleep as either central or obstructive in nature was investigated. Setting and participants: PTT measure was used in adjunct to routine overnight polysomnographic studies performed on 33 children (26 boys and 7 girls; mean +/- SD age, 6.7 +/- 3.9 years). The accuracy of PTT measurements was then evaluated against scored corresponding respiratory events in the polysomnography recordings. Results: Three hundred thirty-four valid respiratory events occurred and were analyzed. One hundred twelve obstructive events (OEs) showed a decrease in mean PTT over a 10-sample window that had a probability of being correctly ranked below the baseline PTT during tidal breathing of 0.92 (p < 0.005); 222 central events (CEs) showed a decrease in the variance of PTT over a 10-sample window that had a probability of being ranked below the baseline PTT of 0.94 (p < 0.005). This indicates that, at a sensitivity of 0.90, OEs can be detected with a specificity of 0.82 and CEs can be detected with a specificity of 0.80. Conclusions: PTT is able to categorize CEs and OEs accordingly in the absence of motion artifacts, including hypopneas. Hence, PTT shows promise to differentiate respiratory, events accordingly and can be an important diagnostic tool in pediatric respiratory sleep studies.< 0.005); 222 central events (CEs) showed a decrease in the variance of PTT over a 10-sample window that had a probability of being ranked below the baseline PTT of 0.94 (p < 0.005). This indicates that, at a sensitivity of 0.90, OEs can be detected with a specificity of 0.82 and CEs can be detected with a specificity of 0.80. Conclusions: PTT is able to categorize CEs and OEs accordingly in the absence of motion artifacts, including hypopneas. Hence, PTT shows promise to differentiate respiratory, events accordingly and can be an important diagnostic tool in pediatric respiratory sleep studies.');"
Resumo:
Changes in arterial distensibility have been widely used to identify the presence of cardiovascular abnormalities like hypertension. Pulse wave velocity (PWV) has shown to be related to arterial distensibility. However, the lack of suitable techniques to measure PWV nonintrusively has impeded its clinical usefulness. Pulse transit time (PTT) is a noninvasive technique derived from the principle of PWV. PTT has shown its capabilities in cardiovascular and cardiorespiratory studies in adults. However, no known study has been conducted to understand the suitability and utility of PTT to estimate PWV in children. Two computational methods to derive PWV from PTT values obtained from 23 normotensive Caucasian children (19 males, aged 5-12 years old) from their finger and toe were conducted. Furthermore, the effects of adopting different postures on the PWV derivations were investigated. Statistical analyses were performed in comparison with two previous PWV studies conducted on children. Results revealed that PWV derived from the upper limb correlated significantly (P
Resumo:
Pulse oximetry is commonly used as an arterial blood oxygen saturation (SaO(2)) measure. However, its other serial output, the photoplethysmography (PPG) signal, is not as well studied. Raw PPG signals can be used to estimate cardiovascular measures like pulse transit time (PTT) and possibly heart rate (HR). These timing-related measurements are heavily dependent on the minimal variability in phase delay of the PPG signals. Masimo SET (R) Rad-9 (TM) and Novametrix Oxypleth oximeters were investigated for their PPG phase characteristics on nine healthy adults. To facilitate comparison, PPG signals were acquired from fingers on the same hand in a random fashion. Results showed that mean PTT variations acquired from the Masimo oximeter (37.89 ms) were much greater than the Novametrix (5.66 ms). Documented evidence suggests that I ms variation in PTT is equivalent to I mmHg change in blood pressure. Moreover, the PTT trend derived from the Masimo oximeter can be mistaken as obstructive sleep apnoeas based on the known criteria. HR comparison was evaluated against estimates attained from an electrocardiogram (ECG). Novametrix differed from ECG by 0.71 +/- 0.58% (p < 0.05) while Masimo differed by 4.51 +/- 3.66% (p > 0.05). Modem oximeters can be attractive for their improved SaO(2) measurement. However, using raw PPG signals obtained directly from these oximeters for timing-related measurements warrants further investigations.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.
Resumo:
Characteristics obtained from peripheral pulses can be used to assess the status of cardiovascular system of subjects. However, nonintrusive techniques are preferred when prolonged monitoring is required for their comfort. Pulse transit time ( PTT) measurement has showed its potentials to monitor timing changes in peripheral pulse in cardiovascular and respiratory studies. In children, the common peripheries used for these studies are fingers or toes. Presently, there is no known study conducted on children to investigate the possible physiologic parameters that can confound PTT measure at these sites. In this study, PTT values from both peripheral sites were recorded from 55 healthy Caucasian children ( 39 male) with mean age of 8.4 +/- 2.3 years ( range 5 - 12 years). Peripheries' path length, heart rate, systolic blood pressure, diastolic blood pressure ( DBP) and mean arterial pressure ( MAP) were measured to investigate their contributions to PTT measurement. The results reveal that PTT is significantly related to all parameters ( P< 0.05), except for DBP and MAP. Age is observed to be the dominant factor that affects PTT at both peripheries in a child. Regression equations for PTT were derived for measuring from a finger and toe, ( 6.09 age + 189.2) ms and ( 6.70 age + 243.0) ms, respectively.
Resumo:
Pulse transit time (PTT) is a non-invasive measure of arterial compliance. It can be used to assess instantaneous blood pressure (BP) changes in continual cardiovascular measurement such as during overnight respiratory sleep studies. In these studies, periodic changes in limb position can occur randomly. However, little is known about their possible effects on PTT monitored on the various limbs. The objective of this study was to evaluate PTT differences on all four limbs during two positional changes (lowering and raising of a limb). Ten healthy adults (seven male) with a mean age of 27.0 years were recruited in this study. The results showed that the limb that underwent a positional change had significant (p < 0.05) local PTT differences when compared to its nominal baseline value, whereas PTT changes in the other remaining limbs were insignificant (p > 0.05). The mean PTT value measured from a vertically-raised limb increased by 42.7 ms, while it decreased by 28.1 ms with a half-lowered limb. The PTT differences observed during positional change can be contributed to by the complex interactions between hydrostatic pressure changes, autonomic and local autoregulation experienced in these limbs. Hence the findings herein suggest that PTT is able to reflect local circulatory responses despite changes in the position of other limbs. This can be useful in prolonged clinical observations where limb movements are expected.
Resumo:
Microhardness maps of cross-sections of high-pressure diecast test bars of AZ91 have been determined. Specimens with rectangular cross-sections, 1, 2 and 3 mm thick, or with a circular cross-section 6.4 mm in diameter, have been studied. The hardness is generally higher near the edges in all specimens, and more so near the corners of the rectangular specimens. The hardness at the center of the castings is generally lower, due to a coarser solidification microstructure and the concentration of porosity. The evidence confirms that the surface of the castings is harder than the core, but it does not support the concept of a skin with a sharp. and definable boundary. This harder layer is irregular in hardness and depth and is not equally hard on opposite sides of the casting. The mean hardness obtained by integrating the microhardness maps over the entire cross-section increased with decreasing thickness of the bars, and was found to be in good correlation with each bar's yield strength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Exercise brachial blood pressure ( BP) predicts mortality, but because of wave reflection, central ( ascending aortic) pressure differs from brachial pressure. Exercise central BP may be clinically important, and a noninvasive means to derive it would be useful. The purpose of this study was to test the validity of a noninvasive technique to derive exercise central BP. Ascending aortic pressure waveforms were recorded using a micromanometer-tipped 6F Millar catheter in 30 patients (56 +/- 9 years; 21 men) undergoing diagnostic coronary angiography. Simultaneous recordings of the derived central pressure waveform were acquired using servocontrolled radial tonometry at rest and during supine cycling. Pulse wave analysis of the direct and derived pressure signals was performed offline (SphygmoCor 7.01). From rest to exercise, mean arterial pressure and heart rate were increased by 20 +/- 10 mm Hg and 15 +/- 7 bpm, respectively, and central systolic BP ranged from 77 to 229 mm Hg. There was good agreement and high correlation between invasive and noninvasive techniques with a mean difference (+/- SD) for central systolic BP of -1.3 +/- 3.2 mm Hg at rest and -4.7 +/- 3.3 mm Hg at peak exercise ( for both r=0.995; P < 0.001). Conversely, systolic BP was significantly higher peripherally than centrally at rest (155 +/- 33 versus 138 +/- 32mm Hg; mean difference, -16.3 +/- 9.4mm Hg) and during exercise (180 +/- 34 versus 164 +/- 33 mm Hg; mean difference, -15.5 +/- 10.4 mm Hg; for both P < 0.001). True myocardial afterload is not reliably estimated by peripheral systolic BP. Radial tonometry and pulse wave analysis is an accurate technique for the noninvasive determination of central BP at rest and during exercise.