73 resultados para Rectangular Microstrip Antenna

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter describes a new idea of increasing operational bandwidth of a compact planar inverted F antenna (PIFA) by introducing open-end slots in the ground plane under the radiating patch. The slots are not in the way of active modules of a wireless transceiver and thus the proposed antenna size reduction method is attractive from the point of view of practical implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design and development of a photonic bandgap (PBG)-assisted shared-aperture dual-band orthogonal aperture-fed rectangular microstrip patch antenna element, which is suitable for a portable very small aperture terminal (VSAT), are presented in this paper. The dual-band dual-polarized antenna element achieves 21% input impedance bandwidth at the S- and C-bands. A comparison of the antenna with and without 2D PBG grids shows that the inclusion of PBG structures (PBGSs) improves the antenna performances. (c) 2005 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a rectangular array antenna with a suitable signal-processing algorithm that is able to steer the beam in azimuth over a wide frequency band. In the previous approach, which was reported in the literature, an inverse discrete Fourier transform technique was proposed for obtaining the signal weighting coefficients. This approach was demonstrated for large arrays in which the physical parameters of the antenna elements were not considered. In this paper, a modified signal-weighting algorithm that works for arbitrary-size arrays is described. Its validity is demonstrated in examples of moderate-size arrays with real antenna elements. It is shown that in some cases, the original beam-forming algorithm fails, while the new algorithm is able to form the desired radiation pattern over a wide frequency band. The performance of the new algorithm is assessed for two cases when the mutual coupling between array elements is both neglected and taken into account.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a novel design procedure for designing a compact UWB antipodal Vivaldi antenna is presented. The antenna operates over the UWB frequency, band from 3.1 to more than 10.6 GHz. Its measured far-field radiation is directive and its peak gain is 10.2 dBi in the specified band. The antenna pulse response shows negligible distortion, indicating that it can be useful in a precision ranging and imaging instrumentation. (c) 2006 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a spatial beamformer which by using a rectangular array antenna steers a beam in azimuth over a wide frequency band without frequency filters or tap-delay networks. The weighting coefficients are real numbers which can be realized by attenuators or amplifiers. A prototype including a 4 x 4 array of square planar monopoles and a feeding network composed of attenuators, power divider/combiners and a rat-race hybrid is developed to test the validity of this wide-band beamforming concept. The experimental results prove the validity of this wide-band spatial beamformer for small size arrays.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design of a dual-band 2.45/5.2 GHz antenna for an access point of a wireless local area network (WLAN) is presented. The proposed antenna is formed by an assembly of a radial line slot array (RLSA) operating at 2.4 GHz and a microstrip patch working at 5.2 GHz. The design of this antenna system is accomplished using commercially available finite element software, high frequency structure simulator (HFSS), of Ansoft. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two investigated frequency bands.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of dual-band 2.45/5.2 GHz antenna for an acces point of a Wireless Local Area Network (LAN) is presented. The proposed antenna is formed by a Radial Line Slot Array (RLSA) operating at 2.4 GHz and a Microstrip patch working at 5.2 GHz, both featuring circular polarization. The design of this antenna system is accomplished using commercially available Finite Element software. High Frequency Structure Simulator (HFSS) of Ansoft and an in-house developed iteration procedure. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two frequency bands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of an ultra-wideband planar tapered slot antenna for use in a circular cylindrical microwave imaging system is pre-sented. The antenna was designed assuming high dielectric substrate material Rogers RT6010LM to achieve its compact size. The developed antenna element (50 X 50 mm(2)) features a 10-dB return loss bandwidth from 2.75 GHz to more than 11 GHz. The gain of the antenna is between 3.5 and 9.4 dBi over the 3-10 GHz band. The experimental tests showed that the manufactured antenna element supports transmission of narrow pulses with negligible distortions, as required in the microwave imaging system. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents various novel and conventional planar electromagnetic bandgap (EBG)-assisted transmission lines. Both microstrip lines and coplanar waveguides (CPWs) are designed with circular, rectangular, annular, plus-sign and fractal-patterned EBGs and dumbbell-shaped defected ground structure (DGS). The dispersion characteristics and the slow-wave factors of the design are investigated. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the design of a wideband rectangular array of planar monopoles, which is able to steer its beam and nulls over a wide frequency band using real-valued weights. These weights can be realized in practice by amplifiers or attenuators leading to a low cost development of a wideband array antenna with beam and null steering capability. The weights are determined by applying an inverse discrete Fourier transform to an assumed radiation pattern. This wideband beam and null forming concept is verified by full electromagnetic simulations which take into account mutual coupling effects between the array elements.