87 resultados para Receptors, Urokinase Plasminogen Activator

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine which genes of the plasminogen activator (PA) system were expressed in osteoclasts, RNA extracted from microisolated mouse osteoclasts was used as template for reverse transcribed polymerase chain reaction (RT-PCR) with gene-specific primer pairs, Using this approach, the expression of RNAs for tissue-type plasminogen activator, urokinase-type plasminogen activator, plasminogen activator inhibitor-1, plasminogen activator inhibitor-2, protease nexin, and urokinase receptor isoform 1 (uPAR1) were detected in mouse osteoclasts. The expression of uPAR RNA in osteoclasts was confirmed by in situ hybridization with a uPAR1 probe, RNA encoding the uPAR isoform 2 was not detected in mouse osteoclasts, but a novel unspliced uPAR RNA variant was detected in these cells, The novel uPAR variant and uPAR1 RNA were also detected in mouse calvarial osteoblasts, kidney, muscle, and the mouse macrophage cell line J774A.1 by RT-PCR The presence of RNAs for most of the components of the PA system in osteoclasts suggests that it may have a functional role in this cell type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. Methods: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). Results: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. Conclusions: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-vitro experimentation was performed on porcine and human blood to determine their comparative responsiveness to a novel fibrinolytic inhibitor and thereby assess whether the pig is a suitable animal model for subsequent in-vivo testing of this inhibitor. Thromboelastography showed the clots formed from porcine whole blood to be highly resistant to tissue plasminogen activator (t-PA)-catalyzed lysis, and this communication offers the resistance of porcine plasminogen to activation by t-PA as an explanation. Porcine blood containing 100 and 1500 IU/ml added t-PA lysed very slowly, having LY30 values of 1.9 +/- 1.4 and 2.9 +/- 1.9%, respectively. In contrast, the LY30 values for the human clots containing 100 and 1500 IU/ml t-PA were 77.1 +/- 6.3 and 93.3 +/- 1.3%, respectively. Moreover, purified porcine plasminogen was activated very slowly by added t-PA in the presence of both human and porcine fibrin. Activation of plasminogen by the endogenous activators, as measured by the euglobulin clot lysis time, was greatly prolonged for the pig (22 +/- 3 h) compared with the human (3.5 +/- 1.5 h). These results suggest caution in using the pig as an experimental model when studying the effects of various agents on fibrinolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis: of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The regulation of plasminogen activation is a key element in controlling proteolytic events in the extracellular matrix. Our previous studies had demonstrated that in inflamed gingival tissues, tissue-type plasminogen activator (t-PA) is significantly increased in the extracellular matrix of the connective tissue and that interleukin 1 beta (IL-1 beta) can up regulate the level of t-PA and plasminogen activator inhibitor-2 (PAI-2) synthesis by human gingival fibroblasts. Method: In the present study, the levels of t-PA and PAI-2 in gingival crevicular fluid (GCF) were measured from healthy, gingivitis and periodontitis sites and compared before and after periodontal treatment. Crevicular fluid from 106 periodontal sites in 33 patients were collected. 24 sites from 11 periodontitis patients received periodontal treatment after the first sample collection and post-treatment samples were collected 14 days after treatment. All samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for t-PA and PAI-2. Results: The results showed that significantly high levels of t-PA and PAI-2 in GCF were found in the gingivitis and periodontitis sites. Periodontal treatment led to significant decreases of PAI-2, but not t-PA, after 14 days. A significant positive linear correlation was found between t-PA and PAI-2 in GCF (r=0.80, p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DC) are potent antigen-presenting cells and understanding their mechanisms of antigen uptake is important for loading DC with antigen for immunotherapy. The multilectin receptors, DEC-205 and macrophage mannose receptor (MMR), are potential antigen-uptake receptors; therefore, we examined their expression and FITC-dextran uptake by various human DC preparations. The RT-PCR analysis detected low levels of DEC-205 mRNA in immature blood DC, Langerhans cells (LC) and immature monocyte-derived DC (Mo-DC), Its mRNA expression increased markedly upon activation, indicating that DEC-205 is an activation-associated molecule. In Mo-DC, the expression of cell-surface DEC-205 increased markedly during maturation. In blood DC, however, the cell-surface expression of DEC-205 did not change during activation, suggesting the presence of a large intracellular pool of DEC-205 or post-transcriptional regulation. Immature Mo-DC expressed abundant MMR, but its expression diminished upon maturation. Blood DC and LC did not express detectable levels of the MMR, FITC-dextran uptake by both immature and activated blood DC was 30- to 70-fold less than that of LC, immature Mo-DC and macrophages. In contrast to immature Mo-DC, the FITC-dextran uptake by LC was not inhibited effectively by mannose, an inhibitor for MMR-mediated FITC-dextran uptake. Thus, unlike Mo-DC, blood DC and LC do not use the MMR for carbohydrate-conjugated antigen uptake and alternative receptors may yet be defined on these DC. Therefore, DEC-205 may have a different specificity as an antigen uptake receptor or contribute to an alternative DC function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The urokinase receptor (uPAR) is important in the process of extracellular matrix degradation occurring during cancer cell invasion and metastasis. We wished to quantify uPAR on the surfaces of normal mammary epithelial cells (HMEC) and 6 well-known breast cancer cell lines using flow cytometry. Materials and Methods: Cell surface uPAR was labelled with a monoclonal antibody, and this was detected with a florescent-labelled second antibody and accurately measured using flow cytometry. The measured fluorescent signals of the stained cells were interpolated with those of Quantum Simply Cellular bead standards to determine the number of uPAR sites per cell. Results: The breast cancer cell lines ranged from 13,700 to 50,800 uPAR sites per cell, whilst HMEC cells had only 2,500 sites. Conclusions: This simple and reliable method showed that the expression of cell surface uPAR is higher in the breast cancer cell lines than in the normal mammary cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many serine proteases play important regulatory roles in complex biological systems, but only a few have been linked directly with capillary morphogenesis and angiogenesis. Here we provide evidence that serine protease activities, independent of the plasminogen activation cascade, are required for microvascular endothelial cell reorganization and capillary morphogenesis in vitro. A homology cloning approach targeting conserved motifs present in all serine proteases, was used to identify candidate serine proteases involved in these processes, and revealed 5 genes (acrosin, testisin, neurosin, PSP and neurotrypsin), none of which had been associated previously with expression in endothelial cells. A subsequent gene-specific RT-PCR screen for 22 serine proteases confirmed expression of these 5 genes and identified 7 additional serine protease genes expressed by human endothelial cells, urokinase-type plasminogen activator, protein C,TMPRSS2, hepsin, matriptase/ MT-SPI, dipepticlylpepticlase IV, and seprase. Differences in serine protease gene expression between microvascular and human umbilical vein endothelial cells (HUVECs) were identified and several serine protease genes were found to be regulated by the nature of the substratum, ie. artificial basement membrane or fibrillar type I collagen. mRNA transcripts of several serine protease genes were associated with blood vessels in vivo by in situ hybridization of human tissue specimens. These data suggest a potential role for serine proteases, not previously associated with endothelium, in vascular function and angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage activation is a key determinant of susceptibility and pathology in a variety of inflammatory diseases. The extent of macrophage activation is tightly regulated by a number of pro-inflammatory cytokines (e.g. IFN-gamma, IL-2, GM-CSF, IL-3) and anti-inflammatory cytokines (e.g. IL-4, IL-10, TGF-beta). Macrophage colony-stimulating factor (CSF-1/M-CSF) is a key differentiation, growth and survival factor for monocytes/macrophages and osteoclasts. The role of this factor in regulating macrophage activation is often overlooked. This review will summarize our current understanding of the effects of CSF-1 on the activation state of mature macrophages and its role in regulating immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion- and perfusion-weighted magnetic resonance imaging provides important pathophysiological information in acute bra-in ischemia. We performed a prospective study in 19 sub-6-hour stroke patients using serial diffusion- and perfusion-weighted imaging before intravenous thrombolysis, with repeat studies, both subacutely and at outcome. For comparison of ischemic lesion evolution and clinical outcome, we used a historical control group of 21 sub-6-hour ischemic stroke patients studied serially with diffusion- and perfusion-weighted imaging. The two groups were well matched for the baseline National Institutes of Health Stroke Scale and magnetic resonance parameters. Perfusion-weighted imaging-diffusion-weighted imaging mismatch was present in 16 of 19 patients treated with tissue plasminogen activator, and 16 of 21 controls. Perfusion-weighted imaging-diffusion-weighted imaging mismatch patients treated with tissue plaminogen activator had higher recanalization rates and enhanced reperfusion at day 3 (81% vs 47% in controls), and a greater proportion of severely hypoperfused acute mismatch tissue not progressing to infarction (82% vs -25% in controls). Despite similar baseline diffusion-weighted imaging lesions, infarct expansion was less in the recombinant tissue plaminogen activator group (14cm(3) vs 56cm(3) in controls). The positive effect of thrombolysis on lesion growth in mismatch patients translated into a greater improvement in baseline to outcome National Institutes of Health Stroke Scale in the group treated with recombinant tissue plaminogen activator, and a significantly larger proportion of patients treated with recombinant tissue plaminogen activator having a clinically meaningful improvement in National Institutes of Health Stroke Scale of;2:7 points. The natural evolution of acute perfusion-weighted imaging-diffusion-weighted imaging mismatch tissue may be altered by thrombolysis, with improved stroke outcome. This has implications for the use of diffusion- and perfusion-weighted imaging in selecting and monitoring patients for thrombolytic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose-The Echoplanar Imaging Thrombolysis Evaluation Trial ( EPITHET) tests the hypothesis that perfusion-weighted imaging (PWI)-diffusion-weighted imaging (DWI) mismatch predicts the response to thrombolysis. There is no accepted standardized definition of PWI-DWI mismatch. We compared common mismatch definitions in the initial 40 EPITHET patients. Methods-Raw perfusion images were used to generate maps of time to peak (TTP), mean transit time (MTT), time to peak of the impulse response (Tmax) and first moment transit time (FMT). DWI, apparent diffusion coefficient ( ADC), and PWI volumes were measured with planimetric and thresholding techniques. Correlations between mismatch volume (PWIvol-DWIvol) and DWI expansion (T2(Day) (90-vol)-DWIAcute-vol) were also assessed. Results-Mean age was 68 +/- 11, time to MRI 4.5 +/- 0.7 hours, and median National Institutes of Health Stroke Scale (NIHSS) score 11 (range 4 to 23). Tmax and MTT hypoperfusion volumes were significantly lower than those calculated with TTP and FMT maps (P < 0.001). Mismatch >= 20% was observed in 89% (Tmax) to 92% (TTP/FMT/MTT) of patients. Application of a +4s ( relative to the contralateral hemisphere) PWI threshold reduced the frequency of positive mismatch volumes (TTP 73%/FMT 68%/Tmax 54%/MTT 43%). Mismatch was not significantly different when assessed with ADC maps. Mismatch volume, calculated with all parameters and thresholds, was not significantly correlated with DWI expansion. In contrast, reperfusion was correlated inversely with infarct growth (R= -0.51; P = 0.009). Conclusions-Deconvolution and application of PWI thresholds provide more conservative estimates of tissue at risk and decrease the frequency of mismatch accordingly. The precise definition may not be critical; however, because reperfusion alters tissue fate irrespective of mismatch.