26 resultados para Real-Time Decision Support System
em University of Queensland eSpace - Australia
Resumo:
A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.
Resumo:
Due to the socio-economic inhomogeneity of communities in developing countries, the selection of sanitation systems is a complex task. To assist planners and communities in assessing the suitability of alternatives, the decision support system SANEX™ was developed. SANEX™ evaluates alternatives in two steps. First, Conjunctive Elimination, based on 20 mainly technical criteria, is used to screen feasible alternatives. Subsequently, a model derived from Multiattribute Utility Technique (MAUT) uses technical, socio-cultural and institutional criteria to compare the remaining alternatives with regard to their implementability and sustainability. This paper presents the SANEX™ algorithm, examples of its application in practice, and results obtained from field testing.
Resumo:
We present the design rationale and basic workings of a low-cost, easy-to-use power system simulator developed to support investigations into human interface design for a hydropower plant. The power system simulator is based on three important components: models of power system components, a data repository, and human interface elements. Dynamic Data Exchange (DDE) allows simulator components to communicate with each other within the simulator. To construct the modules of the simulator we have combined the advantages of commercial software such as Matlab/Simulink, ActiveX Control, Visual Basic and Excel and integrated them in the simulator. An important advantage of our approach is that further components of the simulator now can be developed independently. An initial assessment of the simulator indicates it is fit for intended purpose.
Resumo:
It is common for a real-time system to contain a nonterminating process monitoring an input and controlling an output. Hence, a real-time program development method needs to support nonterminating repetitions. In this paper we develop a general proof rule for reasoning about possibly nonterminating repetitions. The rule makes use of a Floyd-Hoare-style loop invariant that is maintained by each iteration of the repetition, a Jones-style relation between the pre- and post-states on each iteration, and a deadline specifying an upper bound on the starting time of each iteration. The general rule is proved correct with respect to a predicative semantics. In the case of a terminating repetition the rule reduces to the standard rule extended to handle real time. Other special cases include repetitions whose bodies are guaranteed to terminate, nonterminating repetitions with the constant true as a guard, and repetitions whose termination is guaranteed by the inclusion of a fixed deadline. (C) 2002 Elsevier Science B.V. All rights reserved.