11 resultados para Readings and recitations.
em University of Queensland eSpace - Australia
Resumo:
After ingestion of a standardized dose of ethanol, alcohol concentrations were assessed, over 3.5 hours from blood (six readings) and breath (10 readings) in a sample of 412 MZ and DZ twins who took part in an Alcohol Challenge Twin Study (ACTS). Nearly all participants were subsequently genotyped on two polymorphic SNPs in the ADH1B and ADH1C loci known to affect in vitro ADH activity. In the DZ pairs, 14 microsatellite markers covering a 20.5 cM region on chromosome 4 that includes the ADH gene family were assessed, Variation in the timed series of autocorrelated blood and breath alcohol readings was studied using a bivariate simplex design. The contribution of a quantitative trait locus (QTL) or QTL's linked to the ADH region was estimated via a mixture of likelihoods weighted by identity-by-descent probabilities. The effects of allelic substitution at the ADH1B and ADH1C loci were estimated in the means part of the model simultaneously with the effects sex and age. There was a major contribution to variance in alcohol metabolism due to a QTL which accounted for about 64% of the additive genetic covariation common to both blood and breath alcohol readings at the first time point. No effects of the ADH1B*47His or ADH1C*349Ile alleles on in vivo metabolism were observed, although these have been shown to have major effects in vitro. This implies that there is a major determinant of variation for in vivo alcohol metabolism in the ADH region that is not accounted for by these polymorphisms. Earlier analyses of these data suggested that alcohol metabolism is related to drinking behavior and imply that this QTL may be protective against alcohol dependence.
Resumo:
Purpose: Although manufacturers of bicycle power monitoring devices SRM and Power Tap (PT) claim accuracy to within 2.5%, there are limited scientific data available in support. The purpose of this investigation was to assess the accuracy of SRM and PT under different conditions. Methods: First, 19 SRM were calibrated, raced for 11 months, and retested using a dynamic CALRIG (50-1000 W at 100 rpm). Second, using the same procedure, five PT were repeat tested on alternate days. Third, the most accurate SRM and PT were tested for the influence of cadence (60, 80, 100, 120 rpm), temperature (8 and 21degreesC) and time (1 h at similar to300 W) on accuracy. Finally, the same SRM and PT were downloaded and compared after random cadence and gear surges using the CALRIG and on a training ride. Results: The mean error scores for SRM and PT factory calibration over a range of 50-1000 W were 2.3 +/- 4.9% and -2.5 +/- 0.5%, respectively. A second set of trials provided stable results for 15 calibrated SRM after 11 months (-0.8 +/- 1.7%), and follow-up testing of all PT units confirmed these findings (-2.7 +/- 0.1%). Accuracy for SRM and PT was not largely influenced by time and cadence; however. power output readings were noticeably influenced by temperature (5.2% for SRM and 8.4% for PT). During field trials, SRM average and max power were 4.8% and 7.3% lower, respectively, compared with PT. Conclusions: When operated according to manufacturers instructions, both SRM and PT offer the coach, athlete, and sport scientist the ability to accurately monitor power output in the lab and the field. Calibration procedures matching performance tests (duration, power, cadence, and temperature) are, however, advised as the error associated with each unit may vary.
Resumo:
Cerebral electrical impedance is useful for the detection of cerebral edema following hypoxia in newborn infants. Thus it may be useful for determining neurological outcome or monitoring treatment. Hypothermia is a promising new therapy currently undergoing trials, but will alter impedance measurements. This study aimed to define the relationship between temperature and both cerebral and whole body electrical impedance, and to derive correction factors for adjustment of impedance measurements during hypothermia. In eight anaesthetized 1-2 day old piglets rectal, tympanic and scalp temperatures were monitored continuously. Following baseline readings at a rectal temperature of 39degreesC, piglets were cooled to 32degreesC. Four piglets were re-warmed. Cerebral and whole body impedance were measured at each 0.5degreesC as rectal temperature decreased. There was a strong linear relationship between both cerebral and whole body impedance and each of the temperatures measured. There was no difference in the relationship between impedance and rectal, tympanic or scalp temperatures. The relationship for impedance and rectal temperature was the same during cooling and re-warming. Using the correction factors derived it will be possible to accurately monitor cerebral and whole body fluid distribution during hypothermic treatment.