151 resultados para Reactivity continuum
em University of Queensland eSpace - Australia
Resumo:
We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.
Resumo:
The classical model of surface layering followed by capillary condensation during adsorption in mesopores, is modified here by consideration of the adsorbate solid interaction potential. The new theory accurately predicts the capillary coexistence curve as well as pore criticality, matching that predicted by density functional theory. The model also satisfactorily predicts the isotherm for nitrogen adsorption at 77.4 K on MCM-41 material of various pore sizes, synthesized and characterized in our laboratory, including the multilayer region, using only data on the variation of condensation pressures with pore diameter. The results indicate a minimum mesopore diameter for the surface layering model to hold as 14.1 Å, below which size micropore filling must occur, and a minimum pore diameter for mechanical stability of the hemispherical meniscus during desorption as 34.2 Å. For pores in-between these two sizes reversible condensation is predicted to occur, in accord with the experimental data for nitrogen adsorption on MCM-41 at 77.4 K.
Resumo:
Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. Published by Elsevier Science B.V.
Resumo:
A new model proposed for the gasification of chars and carbons incorporates features of the turbostratic nanoscale structure that exists in such materials. The model also considers the effect of initial surface chemistry and different reactivities perpendicular to the edges and to the faces of the underlying crystallite planes comprising the turbostratic structure. It may be more realistic than earlier models based on pore or grain structure idealizations when the carbon contains large amounts of crystallite matter. Shrinkage of the carbon particles in the chemically controlled regime is also possible due to the random complete gasification of crystallitic planes. This mechanism can explain observations in the literature of particle size reduction. Based on the model predictions, both initial surface chemistry and the number of stacked planes in the crystallites strongly influence the reactivity and particle shrinkage. Its test results agree well with literature data on the air-oxidation of Spherocarb and show that it accurately predicts the variation of particle size with conversion. Model parameters are determined entirely from rate measurements.
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
When surveyed, many individuals without psychosis report a range of beliefs and experiences that are shared by patients with psychosis. This study aimed to examine quasi-psychotic beliefs and experiences in a sample of well Australians. 303 individuals were recruited from a defined catchment area as part of the Brisbane Psychosis Study. All subjects were screened with a modified SCAN in order to exclude psychoses. The Peters Delusional Inventory (PDI 40 items), items from the Chapmans' Psychosis Proneness Scale (PPS), the Communication Awareness Scale (CAS: a measure of awareness of thought disorder), items related to perceptions and beliefs from various schizotypy questionnaires and the Social Desirability (SD) items from the EPQ were administered. There was a significant negative correlation between age and total score on the PDI. There were significant positive correlations between the PDI, the PPS, the CAS and the items related to perception. There were no significant gender differences on any of the scores apart from SD (females had higher scores). Those with a positive family history of mental illness other than schizophrenia (n = 118) scored significantly higher on the PDI and scores related to perception, however they were no different on SD or the Psychosis Proneness items. There were no group differences on any of these items when those with a positive family history of schizophrenia (n = 27) were compared to the rest of the group. Well individuals who endorse delusional beliefs also tend to endorse items related to abnormal perceptions and awareness of thought disorder. The results of the study support the concept of a 'continuum of beliefs and experiences' in the general community that should inform our neurocognitive models of the symptoms of psychosis. The Stanley Foundation supported this project.
Resumo:
A continuum model for regular block structures is derived by replacing the difference quotients of the discrete equations by corresponding differential quotients. The homogenization procedure leads to an anisotropic Cosserat Continuum. For elastic block interactions the dispersion relations of the discrete and the continuous models are derived and compared. Yield criteria for block tilting and sliding are formulated. An extension of the theory for large deformation is proposed. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
Concerns have been raised about the reproducibility of brachial artery reactivity (BAR), because subjective decisions regarding the location of interfaces may influence the measurement of very small changes in lumen diameter. We studied 120 consecutive patients with BAR to address if an automated technique could be applied, and if experience influenced reproducibility between two observers, one experienced and one inexperienced. Digital cineloops were measured automatically, using software that measures the leading edge of the endothelium and tracks this in sequential frames and also manually, where a set of three point-to-point measurements were averaged. There was a high correlation between automated and manual techniques for both observers, although less variability was present with expert readers. The limits of agreement overall for interobserver concordance were 0.13 +/-0.65 mm for the manual and 0.03 +/-0.74 mm for the automated measurement. For intraobserver concordance, the limits of agreement were -0.07 +/-0.38 mm for observer 1 and -0.16 +/-0.55 mm for observer 2. We concluded that BAR measurements were highly concordant between observers, although more concordant using the automated method, and that experience does affect concordance. Care must be taken to ensure that the same segments are measured between observers and serially.
Resumo:
A discrete protocol for teleportation of superpositions of coherent states of optical-cavity fields is presented. Displacement and parity operators are unconventionally used in Bell-like measurement for field states.
Resumo:
Australian funnel-web spiders are recognized as one of the most venomous spiders to humans world-wide. Funnel-web spider antivenom (FWS AV) reverses clinical effects of envenomation from the bite of Atrax robustus and a small number of related Hadronyche species. This study assessed the in vitro efficacy of FWS AV in neutralization of the effects of funnel-web spider venoms, collected from various locations along the eastern seaboard of Australia, in an isolated chick biventer cervicis nerve-muscle preparation. Venoms were separated by SDS-PAGE electrophoresis to compare protein composition and transblotted for Western blotting and incubation with FWS AV. SDS-PAGE of venoms revealed similar low and high molecular weight protein bands. Western blotting with FWS AV showed similar antivenom binding with protein bands in all the venoms tested. Male funnel-web spider venoms (7/7) and female venoms (5110) produced muscle contracture and fasciculation when applied to the nerve-muscle preparation. Venom effects were reversed by subsequent application of FWS AV or prevented by pretreatment of the preparation with antivenom. FWS AV appears to reverse the in vitro toxicity of a number of funnel-web spider venoms from the eastern seaboard of Australia. FWS AV should be effective in the treatment of envenomation from most, if not all, species of Australian funnel-web spiders. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.