85 resultados para Reactive power scheduling
em University of Queensland eSpace - Australia
Resumo:
This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The blending of coals has become popular to improve the performance of coals, to meet specifications of power plants and, to reduce the cost of coals, This article reviews the results and provides new information on ignition, flame stability, and carbon burnout studies of blended coals. The reviewed studies were conducted in laboratory-, pilot-, and full-scale facilities. The new information was taken in pilot-scale studies. The results generally show that blending a high-volatile coal with a low-volatile coal or anthracite can improve the ignition, flame stability and burnout of the blends. This paper discusses two general methods to predict the performance of blended coals: (1) experiment; and (2) indices. Laboratory- and pilot-scale tests, at least, provide a relative ranking of the combustion performance of coal/blends in power station boilers. Several indices, volatile matter content, heating value and a maceral index, can be used to predict the relative ranking of ignitability and flame stability of coals and blends. The maceral index, fuel ratio, and vitrinite reflectance can also be used to predict the absolute carbon burnout of coal and blends within limits. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, a small transmit array of transistor amplifiers illuminated by a passive array of microstrip patches in the reactive near-field region is investigated as a power-combining structure. The two cases considered are when the transmit array radiates in a free space and when a passive array similar to the one used for illumination collects the radiated power. A comparison of the performance of the proposed structure against the alternative one, which uses a conventional horn antenna as a power-launching/receiving device, is also presented.
Resumo:
Discoloration and mineralization of Reactive Red HE-3B were studied by using a laponite clay-based Fe nanocomposite (Fe-Lap-RD) as a heterogeneous catalyst in the presence of H2O2 and UV light. Our experimental results clearly indicate that Fe-Lap-RD mainly consists of Fe2O3 (meghemite) and Fe2Si4O10(OH)2 (iron silicate hydroxide) which have tetragonal and monoclinic structures, respectively, and has a high specific surface area (472m(2) / g) as well as a high total pore volume (0.547 cm(3)/g). It was observed that discoloration of HE-3B undergoes a much faster kinetics than mineralization of HE-3B. It was also found that initial HE-3B concentration, H2O2 concentration, UV light wavelength and power, and Fe-Lap-RD catalyst loading are the four main factors that can significantly influence the mineralization of HE-3B. At optimal conditions, complete discoloration of 100 mg/L HE-3B can be achieved in 30 min and the total organic carbon removal ratio can attain 76% in 120 min, illustrating that Fe-Lap-RD has a high photo-catalytic activity in the photo-assisted discoloration and mineralization of HE-3B in the presence of UV light (254nm) and H2O2. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system
Resumo:
Although IL-6 has been shown to predict onset of disability in older persons and both IL-6 and CRP are associated with motality risk, these markers of inflammation have only limited associations with physical performance, except for walking measures and grip strength at baseline, and do not predict change in performance 7 years later in a high-functioning subset of older adults.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
Mouse monoclonal antibodies (mAbs) were raised against the major capsid protein, L1, of human papillomavirus type 16 (HPV16), produced in Escherichia coil with the expression plasmid pTrcL1. Epitope specificity could be assigned to 11 of these 12 antibodies using a series of linear peptides and fusion proteins from HPV16. One mAb (MC53) recognized a novel linear epitope that appears to be unique to the HPV16 genotype. A further 11 mAbs were characterized as recognizing novel and previously defined linear and conformational epitopes shared among more than one HPV genotype. The apparently genotype specific mAb could be useful for the development of diagnostic tests for vegetative virus infection in clinical specimens. (C) 1998 Academic Press.
Resumo:
This paper investigates the effective diagnostic technique(s) for assessing the condition of insulation in aged power transformers. A number of electrical, mechanical and chemical techniques were investigated. Many of these techniques are already used by the utility engineers and two comparatively new techniques are proposed in this paper. Results showing the effectiveness of these diagnostics are presented and correlation between the techniques are also presented. Finally, merits and suitability of different techniques are discussed in this paper.