6 resultados para Reactive Scattering
em University of Queensland eSpace - Australia
Resumo:
We extend our Lanczos subspace time-independent wave packet method [J. Chem. Phys. 116 (2002) 2354] to investigate the issue of symmetry contaminations for the challenging deep-well H + O-2 reaction. Our central objective is to address the issue of whether significant symmetry contamination can occur if a wavepacket initially possessing the correct O-O exchange symmetry is propagated over tens of thousands of recursive steps using a basis which does not explicitly enforce the correct symmetry, and if so how seriously this affects the results. We find that symmetry contamination does exist where the symmetry constraint is not explicitly enforced in the basis. While it affects individual resonances and the associated peak amplitudes, the overall shape of the more averaged quantities such as total reaction probabilities and vibrational branching ratios are not seriously affected. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.
Resumo:
Bound and resonance states of HO2 are calculated quantum mechanically using both the Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization method for nonzero total angular momentum J=6 and 10, using a parallel computing strategy. For bound states, agreement between the two methods is quite satisfactory; for resonances, while the energies are in good agreement, the widths are in general agreement. The quantum nonzero-J specific unimolecular dissociation rates for HO2 are also calculated. (C) 2004 American Institute of Physics.
Resumo:
Bound and resonance states of HO2 have been calculated by both the complex Lanczos homogeneous filter diagonalisation (LHFD) method(1,2) and the real Chebyshev filter diagonalisation method(3,4) for non-zero total angular momentum J = 4 and 5. For bound states, the agreement between the two methods is quite satisfactory; for resonances while the energies are in good agreement, the widths are only in general agreement. The relative performances of the two iterative FD methods have also been discussed in terms of efficiency as well as convergence behaviour for such a computationally challenging problem. A helicity quantum number Ohm assignment (within the helicity conserving approximation) is performed and the results indicate that Coriolis coupling becomes more important as J increases and the helicity conserving approximation is not a good one for the HO2 resonance states.
Resumo:
We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.
Resumo:
We explore the calculation of unimolecular bound states and resonances for deep-well species at large angular momentum using a Chebychev filter diagonalization scheme incorporating doubling of the autocorrelation function as presented recently by Neumaier and Mandelshtam [Phys. Rev. Lett. 86, 5031 (2001)]. The method has been employed to compute the challenging J=20 bound and resonance states for the HO2 system. The methodology has firstly been tested for J=2 in comparison with previous calculations, and then extended to J=20 using a parallel computing strategy. The quantum J-specific unimolecular dissociation rates for HO2-> H+O-2 in the energy range from 2.114 to 2.596 eV have been reported for the first time, and comparisons with the results of Troe and co-workers [J. Chem. Phys. 113, 11019 (2000) Phys. Chem. Chem. Phys. 2, 631 (2000)] from statistical adiabatic channel method/classical trajectory calculations have been made. For most of the energies, the reported statistical adiabatic channel method/classical trajectory rate constants agree well with the average of the fluctuating quantum-mechanical rates. Near the dissociation threshold, quantum rates fluctuate more severely, but their average is still in agreement with the statistical adiabatic channel method/classical trajectory results.