96 resultados para Reactions of (Anthracen-9-yl)methylsulphanes with DMAD
em University of Queensland eSpace - Australia
Resumo:
The irregular vibronic structure in the S-1<--S-0 resonant two-photon ionization (R2PI) spectrum of supersonically cooled triptycene is a result of a classic Exe Jahn-Teller effect [A. Furlan et al., J. Chem. Phys. 96, 7306 (1992)]. This is well characterized and can be used as an effective probe of intramolecular perturbations. Here we examine the S-1<--S-0 R2PI spectrum of 9-hydroxytriptycene and the fluorescence from various excited state vibronic levels. In this system the pseudorotation of the Jahn-Teller vibration is strongly coupled to the torsional motion of the bridgehead hydroxy group. This torsional motion results in a tunneling splitting in both the ground and excited states. The population of the upper level in the ground electronic state results in additional vibronic transitions becoming symmetry allowed in the R2PI spectrum that are forbidden in the bare triptycene molecule. The assignment of the R2PI and fluorescence spectra allows the potential energy surfaces of these vibrational modes to be accurately quantified. The full C-3v vibronic point group must be used to interpret the spectra. The time scale of the internal rotation of the-OH group and the butterfly flapping of the Jahn-Teller pseudorotation are of similar magnitude. The tunneling between the nine minima on the three dimensional potential energy surface is such that the Jahn-Teller pseudorotation occurs in concert with the-OH internal rotation. The Berry phase that is acquired during this motion is discussed. The simple physical picture emerges of the angle between two of the three benzene moieties opening in three equivalent ways in the S-1 electronic state. This geometry follows the position of the hydroxy group, which preferentially orients itself to point between these two rings. (C) 1998 American Institute of Physics. [S0021-9606(98)02348-4].
Resumo:
The effect of a range of metal ions on the ability of Marimastat to inhibit matrix metalloproteinase 9 (MMP-9) was examined in a fluorescence based proteolytic assay. Whilst none of the metals examined significantly affected the inhibitory ability of Marimastat, several metal ions did have a significant effect on MMP-9 activity itself. In the absence of Marimastat, Zn(II) and Fe(II) significantly inhibited MMP-9 activity at metal ion concentrations of 10 and 100 muM, respectively. In both the absence and presence of Marimastat, Cd(II) significantly inhibited MMP-9 at 100 muM. In contrast, 1 mM Co(II) significantly upregulated MMP-9 proteolytic activity. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
Background and Purpose. Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. A model involving evaluation of the response of the lumbar multifidus and abdominal muscles to leg movement was developed to evaluate this function. Subjects. To examine this function in healthy persons, 9 male and 6 female subjects (mean age = 20.6 years, SD = 2.3) with no history of low back pain were studied. Methods. Fine-wire and surface electromyography electrodes were used to record the activity of selected trunk muscles and the prime movers for hip flexion, abduction, and extension during hip movements in each of these directions. Results. Trunk muscle activity occurring prior to activity of the prime mover of the limb was associated with hip movement in each direction. The transversus abdominis (TrA) muscle was invariably the first muscle that was active. Although reaction time for the TrA and oblique abdominal muscles was consistent across movement directions, reaction time for the rectus abdominis and multifidus muscles varied with the direction of limb movement. Conclusion and Discussion. Results suggest that the central nervous st stem deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipation of reactive forces produced by limb movement. The TrA and oblique abdominal muscles appear to contribute to a function not related to the direction of these forces.
Resumo:
The reaction of the bis(1,2-diamine) copper(II) complexes of racemic propane-1,2-diamine (pn) and 2-methylpropane-1,2-diamine (dmen) with formaldehyde and nitroethane in methanol under basic conditions yields minor macrocyclic condensation products in addition to the major acyclic products. Where C-pendant methyl groups on the pair of coordinated diamines are in cis dispositions, the first -NH-CH2-C(CH3)(NO2)-CH2-NH- ring formation occurs at amine pairs distant from these C-methyl substituents, and further reaction to yield a macrocycle is not observed. However, where the C-methyl substituents are in trans dispositions, the chemistry proceeds to yield the macrocycle. Commencing with pn, trans-(6,13-diammonio-2,6,9,13-tetramethyl-1,4,7,10-tetraazacyclotetradecane)copper(II) perchlorate formed and crystallized in the space group P2(1)/n, with a 9.782(2), b 9.2794(6), c 17.017(4) Angstrom, beta 103.24(1)degrees. The copper ion is found in a square-planar environment, with the two methyl groups of the pn residues and the pairs of introduced pendant groups all in trans arrangements.
Resumo:
Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)(2) and [ZnL4b](ClO4)(2) were determined by time-resolved fluorescence where L-4a and L-4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (k(EET)) of 8.7 x 10(8) s(-1), whereas that of the cis isomer is significantly faster (2.3 x 10(9) s(-1)). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by H-1 NMR for the [ZnL4a](2+) trans complex in the common trans-III N-based isomer gave a calculated Forster rate constant close to that observed experimentally. For the [ZnL4b](2+) cis complex, the experimentally determined rate constant may be attributed to a combination of trans-Ill and trans-I N-based isomeric forms of the complex in solution.
Resumo:
The kinetics of chain reactions of octanedithiol with styrene, thermally initiated with TX29B50 (a 50:50 wt% solution of TX29 diperoxy initiator in a phthalate plasticizer), have been studied over a range of initiator concentrations, a range of mixture formulations and a range of temperatures. This system has been investigated as a model system for the reactions of polyfunctional thiols with divinyl benzene. The reactions have been shown to follow first-order kinetics for both the thiol and the ene species and to be characterized by a dependence on the initiator concentration to the power of one half. The kinetic rate parameters have been shown to adhere to Arrhenius behaviour. A kinetic model for the chain reactions for this system has been proposed. (C) 2003 Society of Chemical Industry.
Resumo:
A solution of fac-[PtMe2(OMe)(H2O)(3)](+) (1) in aqueous perchloric acid underwent very slow hydrolysis of the Pt-OMe bond, over many, weeks. When chloride was added to a solution of 1, two interconverting isomers of [PtMe2(OMe)Cl(H2O)(2)] (with chloride trans to methyl) were formed, and with excess chloride, [PtMe2(OMe)Cl-2(H2O)](-) (both chloride ligands trans to methyl). This solution was stable at ambient temperature, but on heating, methanol was formed and [PtMe2Cl2(H2O)(2)] (both chloride ligands cis to methyl) was produced in the solution. It is proposed that this reaction proceeds via an intermediate complex with chloride bound trans to methoxide. Concentration gave solid [{PtMe2Cl2}n], whose identity was confirmed by conversion to [PtMe(2)Cl(2)py(2)] (pyridine, py, trans to methyl). With bromide and iodide, methoxide hydrolysis occurred at ambient temperature, more slowly with bromide than with iodide, to form solid [{PtMe2X2}(n)] without significant concentrations of [PtMe2X2(H2O)(2)] formed as an intermediate. The greater tendency for Pt-OMe bond to hydrolyse trans to halide compared with 1 was ascribed to the higher trans effect of the halide ligand compared with that of water. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The potential energy surfaces for the reactions of atomic oxygen in its ground electronic state, O(P-3), with the olefins: CF2=CCl2 and CF2=CF - CF3, have been characterized using ab initio molecular orbital calculations. Geometry optimization and vibrational frequency calculations were performed for reactants, transition states and products at the MP2 and QCISD levels of theory using the 6-31G(d) basis set. This database was then used to calculate the rate constants by means of Transition-State-Theory. To obtain a better reference and to test the reliability of the activation barriers we have also carried out computations using the CCSD(T)(fc)/6-311Gdagger, MP4(SDQ)(fc)/CBSB4 and MP2(fc)/CBSB3 single point energy calculations at both of the above levels of theory, as well as with the composite CBS-RAD procedure ( P. M. Mayer, C. J. Parkinson, D. M. Smith and L. Radom, J. Chem. Phys., 1998, 108, 604) and a modi. cation of this approach, called: CBS-RAD( MP2, MP2). It was found that the kinetic parameters obtained in this work particularly with the CBS-RAD ( MP2, MP2) procedure are in reasonable agreement with the experimental values. For both reactions it is found that the channels leading to the olefin double-bond addition predominates with respect to any other reaction pathway. However, on account of the different substituents in the alkenes we have located, at all levels of theory, two transition states for each reaction. Moreover, we have found that, for the reactions studied, a correlation exists between the activation energies and the electronic structure of the transition states which can explain the influence of the substituent effect on the reactivity of the halo-olefins.
Resumo:
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L-3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraaza-cyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2](2+) (Chart 1). By contrast, Stern-Volmer analysis of intermolecular quenching of [ZnL2](2+) by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.
Resumo:
Preparation of a series of specific penta- and tetra-amine derivatives of Co-III and Cr-III with a neutral leaving ligand has been carried out in order to accomplish a fine tuning of the associativeness/dissociativeness of their substitution reactions. Spontaneous aquation reactions of the neutral ligands have been studied at variable temperature and pressure. Although rate constants and thermal activation parameters show an important degree of scatter, the values determined for the activation volumes of the substitution process illustrate the mechanistic fine tuning that may be achieved for these reactions. In all cases, in the absence of important steric constraints in the molecule, electronic inductive effects seem to be the most important factor accounting for the dissociative shifts observed both for pentaamine (i.e.Delta V double dagger=+4.0 or +14.0 cm(3) mol(-1) and +5.2 or +16.5 cm(3) mol(-1) for the aquation of cis- or trans-[Co(MeNH2)(NH3)(4)(DMF)](3+) and cis- or trans-[CoL15(DMF)](3+) respectively, where L-15 represents a pentaamine macrocyclic ligand), and tetraamine systems (i.e.Delta V double dagger=+4.1 or +8.4 cm(3) mol(-1) and -10.8 or -7.4 cm(3) mol(-1) for the aquation of cis-[Co(NH3)(4)Cl(DMAC)](2+) (DMAC=dimethylacetamide) or cis-[Co(en)(2)Cl(DMAC)](2+) and cis-[Cr(NH3)(4)Cl(DMF)](2+) or cis -[Cr(en)(2)Cl(DMF)](2+)). From the results, clear evidence is obtained which indicates that, only when the situation is borderline I-a/I-d, or the steric demands are increased dramatically, dissociative shifts are observed; in all other cases electronic inductive effects seem to be dominant for such a tuning of the substitution process.