4 resultados para Rats as laboratory animals.
em University of Queensland eSpace - Australia
Resumo:
The American Society for Veterinary Clinical Pathology - 38th Annual Meeting
Resumo:
Growth hormone (GH) stimulates mandibular growth but its effect on the mandibular condylar cartilage is not well. understood. Objective: This study was designed to understand the influence of GH on mitotic activity and on chondrocytes maturation. The effect of GH on cartilage thickness was also determined. Design: An animal model witt differences in GH status was determined by comparing mutant Lewis dwarf rats with reduced pituitary GH synthesis (dwarf), with normal rats and dwarf animals treated with GH. Six dwarf rats were injected with GH for 6 days, while other six normal rats and six dwarf rats composed other two groups. Mandibular condylar tissues were processed and stained for Herovici's stain and immunohistochemistry, for proliferating cell nuclear antigen (PCNA) and alkaline phosphatase (ALP). Measurements of cartilage thickness as well as the numbers of immunopositive cells for each antibody were analysed by one-way analysis of variance. Results: Cartilage thickness was significantly reduced in the dwarf animals treated with GH. PCNA expression was significant lower in the dwarf rats, but significantly increased when these animals were treated with GH. ALP expression was significant higher in the dwarf animals, while it was significantly reduced in the dwarf animals treated with GH. Conclusions: The results from this study showed that GH stimulates mitotic activity and delays cartilage cells maturation in the mandibular condyte. This effect at the cellular Level may produce changes in the cartilage thickness. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Modification of proteins by reactive ethanol metabolites has been known for some time to occur in the liver, the main site of ethanol metabolism. In more recent studies of laboratory animals, similar modifications have been detected in organs with lesser ability to metabolize ethanol, such as skeletal and cardiac muscle and brain. Such modification may alter protein function or form a neoantigen, making it a target for immune attack. We now report an analysis of protein modification derived from ethanol metabolites in human brain tissue by ELISA using adduct-specific antibodies. We obtained autopsy cerebellum samples from 10 alcoholic cerebellar degeneration cases and 10 matched controls under informed written consent from the next of kin and clearance from the UQ Human Ethics Committee. Elevated levels of protein modifications derived from acetaldehyde (unreduced-acetaldehyde and acetaldehyde-advanced glycation end-product adducts), from malondialdehyde (malondialdehyde adducts) and from combined adducts (malondialdehydeacetaldehyde (MAA) adducts) were detected in alcoholic cerebellar degeneration samples when compared to controls. Other adduct types found in liver samples, such as reduced-acetaldehyde and those derived from hydroxyethyl radicals, were not detected in brain samples. This may reflect the different routes of ethanol metabolism in the two tissues. This is the first report of elevated protein modification in alcoholic cerebellar degeneration, and suggests that such modification may play a role in the pathogenesis of brain injury. Supported by NIAAA under grant NIH AA12404 and the NHMRC (Australia) under grant #981723.