97 resultados para Rate-limiting steps

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Tumour metastasis remains the principal cause of treatment failure and poor prognosis in patients with cancer. Recent advances in our understanding of the biology of metastasis are providing novel potential targets for anti-cancer therapies. Aim: This paper reviews the current concepts in tumour metastasis. Methods: A review of Medline publications relating to the molecular biology and therapy of human tumour metastasis was conducted. Results and Discussion: Early metastasis models were based upon the premise of uninterrupted tumour growth, with the inevitable formation of distant metastases and eventual death of the patient. However, current research suggests that metastasis is an inefficient process governed by several rate-limiting steps, and that failure to negotiate these steps can lead to tumour dormancy. Successful metastatic tumour growth depends upon appropriate tumour-host microenvironment interactions and, ultimately, the development of vascularised metastases post-extravasation in the target organ. An understanding of the molecular mechanisms involved in this dynamic process will aid in the identification of therapeutic targets that may allow earlier diagnosis and more specific therapies for patients with metastasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an alpha-beta sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenylalanine hydroxylase (PAH) is the enzyme that converts phenylalanine to tyrosine as a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. Over 300 mutations have been identified in the gene encoding PAH that result in a deficient enzyme activity and lead to the disorders hyperphenylalaninaemia and phenylketonuria. The determination of the crystal structure of PAH now allows the determination of the structural basis of mutations resulting in PAH deficiency. We present an analysis of the structural basis of 120 mutations with a 'classified' biochemical phenotype and/or available in vitro expression data. We find that the mutations can be grouped into five structural categories, based on the distinct expected structural and functional effects of the mutations in each category. Missense mutations and small amino acid deletions are found in three categories:'active site mutations', 'dimer interface mutations', and 'domain structure mutations'. Nonsense mutations and splicing mutations form the category of 'proteins with truncations and large deletions'. The final category, 'fusion proteins', is caused by frameshift mutations. We show that the structural information helps formulate some rules that will help predict the likely effects of unclassified and newly discovered mutations: proteins with truncations and large deletions, fusion proteins and active site mutations generally cause severe phenotypes; domain structure mutations and dimer interface mutations spread over a range of phenotypes, but domain structure mutations in the catalytic domain are more likely to be severe than domain structure mutations in the regulatory domain or dimer interface mutations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response [1, 2]. TNFalpha plays a key role in inflammatory disease [3]; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types [4, 5] was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective-To investigate in vitro transdermal absorption of fentanyl from patches through skin samples obtained from various anatomic regions of dogs. Sample Population-Skin samples from 5 Greyhounds. Procedure-Skin samples from the dogs' thoracic, neck, and groin regions were collected postmortem and frozen. After samples were thawed, circular sections were cut and placed in Franz-type diffusion cells in a water bath (32degreesC). A commercial fentanyl patch, attached to an acetate strip with a circular hole, was applied to each skin sample. Cellulose strips were used as control membranes. Samples of receptor fluid in the diffusion cells were collected at intervals for 48 hours, and fentanyl concentrations were analyzed by use of high-performance liquid chromatography. Results-Mean +/- SD release rate of fentanyl from the patch, defined by its absorption rate through the non-rate-limiting cellulose membrane, was linear during the first 8 hours (2.01 +/- 0.05 pg/cm(2) of cellulose membrane/h) and then decreased. Fentanyl passed through skin from the groin region at a faster rate and with a significantly shorter lag time, compared with findings in neck or thoracic skin samples. Conclusions and Clinical Relevance-In vitro, fentanyl from a patch was absorbed more quickly and to a greater extent through skin collected from the groin region of dogs, compared with skin samples from the thoracic and neck regions. Placement of fentanyl patches in the groin region of dogs may decrease the lag time to achieve analgesia perioperatively; however, in vivo studies are necessary to confirm these findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of a strong, active granular sludge bed is necessary for optimal operation of upflow anaerobic sludge blanket reactors. The microbial and mechanical structure of the granules may have a strong influence on desirable properties such as growth rate, settling velocity and shear strength. Theories have been proposed for granule microbial structure based on the relative kinetics of substrate degradation, but contradict some observations from both modelling and microscopic studies. In this paper, the structures of four granule types were examined from full-scale UASB reactors, treating wastewater from a cannery, a slaughterhouse, and two breweries. Microbial structure was determined using fluorescence in situ hybridisation probing with 16S rRNA-directed oligonucleotide probes, and superficial structure and microbial density (volume occupied by cells and microbial debris) assessed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The granules were also modelled using a distributed parameter biofilm model, with a previously published biochemical model structure, biofilm modelling approach, and model parameters. The model results reflected the trophic structures observed, indicating that the structures were possibly determined by kinetics. Of particular interest were results from simulations of the protein grown granules, which were predicted to have slow growth rates, low microbial density, and no trophic layers, the last two of which were reflected by microscopic observations. The primary cause of this structure, as assessed by modelling, was the particulate nature of the wastewater, and the slow rate of particulate hydrolysis, rather than the presence of proteins in the wastewater. Because solids hydrolysis was rate limiting, soluble substrate concentrations were very low (below Monod half saturation concentration), which caused low growth rates. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research techniques and a methodology have been developed that enable the reduction kinetics of molten lead smelting slags with solid carbon to be studied. The rates of reduction of PbO-FeO-Fe2O3-CaO-SiO2 slags with carbon have been measured for a range of slag compositions for PbO concentrations between 3 and 100 weight percent, and temperatures between 1423 and 1573 K. The reduction rates were determined for both graphite and coke. Within the range of process conditions examined, it has been shown that the reaction rates are almost independent of carbon reactivity, SiO2/CaO and SiO2/Fe ratio in the range of compositions investigated and are not influenced by the presence of sulphur in the slag.The apparent first order rate constants for oxygen removal increase with increasing PbO concentration and oxygen activity in the slag. The data indicate that the rate limiting reaction step for the reduction of lead slags with solid carbon is the chemical reaction at the gas/slag interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A key function of activated macrophages is to secrete proinflammatory cytokines such as TNF alpha; however, the intracellular pathway and machinery responsible for cytokine trafficking and secretion is largely undefined. Here we show that individual SNARE proteins involved in vesicle docking and fusion are regulated at both gene and protein expression upon stimulation with the bacterial cell wall component lipopolysaccharide. Focusing on two intracellular SNARE proteins, Vti1b and syntaxin 6 (Stx6), we show that they are up-regulated in conjunction with increasing cytokine secretion in activated macrophages and that their levels are selectively titrated to accommodate the volume and timing of post-Golgi cytokine trafficking. In macrophages, Vti1b and syntaxin 6 are localized on intracellular membranes and are present on isolated Golgi membranes and on Golgi-derived TNF alpha vesicles budded in vitro. By immunoprecipitation, we find that Vti1b and syntaxin 6 interact to form a novel intracellular Q-SNARE complex. Functional studies using overexpression of full-length and truncated proteins show that both Vti1b and syntaxin 6 function and have rate-limiting roles in TNF alpha trafficking and secretion. This study shows how macrophages have uniquely adapted a novel Golgi-associated SNARE complex to accommodate their requirement for increased cytokine secretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vitro measurements of skin absorption are an increasingly important aspect of regulatory studies, product support claims, and formulation screening. However, such measurements are significantly affected by skin variability. The purpose of this study was to determine inter- and intralaboratory variation in diffusion cell measurements caused by factors other than skin. This was attained through the use of an artificial (silicone rubber) rate-limiting membrane and the provision of materials including a standard penetrant, methyl paraben (MP), and a minimally prescriptive protocol to each of the 18 participating laboratories. Standardized calculations of MP flux were determined from the data submitted by each laboratory by applying a predefined mathematical model. This was deemed necessary to eliminate any interlaboratory variation caused by different methods of flux calculations. Average fluxes of MP calculated and reported by each laboratory (60 +/- 27 mug cm(-2) h(-1), n = 25, range 27-101) were in agreement with the standardized calculations of MP flux (60 +/- 21 mug cm(-2) h(-1), range 19-120). The coefficient of variation between laboratories was approximately 35% and was manifest as a fourfold difference between the lowest and highest average flux values and a sixfold difference between the lowest and highest individual flux values. Intra-laboratory variation was lower, averaging 10% for five individuals using the same equipment within a single laboratory. Further studies should be performed to clarify the exact components responsible for nonskin-related variability in diffusion cell measurements. It is clear that further developments of in vitro methodologies for measuring skin absorption are required. (C) 2005 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. (c) 2005 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Investigation of the secondary nucleation threshold (SNT) of alpha-glucose monohydrate was conducted in aqueous solutions in agitated batch systems for the temperature range 10 to 40 degrees C. The width of the SNT decreased as the induction time increased and was found to be temperature independent when supersaturation was based on the absolute concentration driving force. Nonnucleating seeded batch bulk crystallizations of this sugar were performed isothermally in the same temperature range as the SNT experiments, and within the SNT region to avoid nucleation. The growth kinetics were found to be linearly dependent on the supersaturation of total glucose in the system when the mutarotation reaction is not rate limiting. The growth rate constant increases with increasing temperature and follows an Arrhenius relationship with an activation energy of 50 +/- 2 kJ/mol. alpha-Glucose monohydrate shows significant crystal growth rate dispersion (GRD). For the seeds used, the 95% range of growth rates was within a factor of 6 for seeds with a narrow particle size distribution, and 8 for seeds with a wider distribution that was used at 25 degrees C. The results will be used to model the significance of the mutarotation reaction on the overall crystallization rate of D-glucose in industrial crystallization.