141 resultados para Rat Embryos
em University of Queensland eSpace - Australia
Resumo:
Hyperthermia is teratogenic to human and animal embryos and induces mainly anomalies of the nervous system. However, the teratogenic mechanism is poorly understood. Mammalian embryos are known to switch from anaerobic to aerobic metabolism around the time of neural tube closure. This critical event might be sensitive to hyperthermia. The objective of the present study was to evaluate the ultrastructural changes of the mitochondria of the neuroepithelium (NE) of rat embryos following maternal exposure to hyperthermia. Pregnant rats were heat stressed for an hour on gestation day (GD) 9 and embryos were examined by electron microscopy on GD 10. NE presented extensive apoptosis. Intercellular junctions were weakened and copious cellular debris projected into the ventricle. The mitochondria were of diverse size and shape. Most of them were swollen and had short cristae and electron dense matrix. Hydropic changes were also observed in numerous mitochondria. Lipid-laden mitochondria were found in the apical portions of neuroblasts. The mesenchyme (ME) of heat-treated embryos showed paucity of cells and only as frequent apoptosis as the controls. Their mitochondria also showed changes similar to those of the NE. Additionally extensive lipid accumulation was observed in and in the vicinity of mitochondria, often surrounded by short strands of endoplasmic reticulum. Whereas mitochondrial pathology was associated with profound apoptosis in the NE, growth restriction and lipid accumulation accompanied mitochondrial changes in the ME. The results of this study indicate that the embryonic response to maternal heat shock is tissue-specific and morphologically distinct in this species.
Resumo:
The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages, In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose-response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40-50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GK. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription-PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.
Resumo:
We wish to alert people studying early embryonic development in the fruit-fly Drosophila melanogaster of the possible presence of commensal parasites in some stocks.
Resumo:
Freshwater turtle eggs are normally subjected to fluctuations in incubation temperature during natural incubation. Because of this, developing embryos may make physiological adjustments to growth and metabolism in response to incubation at different temperatures. I tested this hypothesis by incubating eggs of the Brisbane river turtle Emydura signata under four different temperature regimes, constant temperatures of 24 degrees C and 31 degrees C throughout incubation, and two swapped-temperature treatments where incubation temperature was changed approximately halfway through incubation. Incubation at 31 degrees C took 42 d, and incubation at 24 degrees C look 78 d, with intermediate incubation periods for the swapped-temperature treatments. Hatchling mass, hatchling size, and total oxygen consumed during development were similar for all incubation regimes. The pattern of oxygen consumption during the last phase of incubation as reflected by rate of increase of oxygen consumption, peak oxygen consumption, and fall in oxygen consumption before hatching was determined solely by the incubation temperature during the last phase of incubation; that is, incubation temperature during the first phase of incubation had no influence on these factors. Thus there is no evidence of temperature compensation in growth or development during embryonic development of E. signata eggs.
Resumo:
1 We have recently suggested the existence in the heart of a 'putative beta(4)-adrenoceptor' based on the cardiostimulant effects of non-conventional partial agonists, compounds that cause cardiostimulant effects at greater concentrations than those required to block beta(1)- and Bz-adrenoceptors. We sought to obtain further evidence by establishing and validating a radioligand binding assay for this receptor with (-)-[H-3]-CGP 12177A ((-)-4-(3-tertiarybutylamino-2-hydroxypropoxy) benzimidazol-2-one) in rat atrium. We investigated (-)-[H-3]-CGP 12177A for this purpose for two reasons, because it is a nonconventional partial agonist and also because it is a hydrophilic radioligand. 2 Increasing concentrations of(-)-[H-3]-CGP 12177A, in the absence or presence of 20 mu M (-)-CGP 12177A to define non-specific binding, resulted in a biphasic saturation isotherm. Low concentrations bound to beta(1)- and beta(2)-adrenoceptors (pK(D) 9.4+/-0.1, B-max 26.9+/-3.1 fmol mg(-1) protein) and higher concentrations bound to the 'putative beta(4)-adrenoceptor' (pK(D) 7.5+/-0.1, B-max 47.7+/-4.9 fmol mg(-1) protein). In other experiments designed to exclude beta(1)- and beta(2)-adrenoceptors, (-)-[H-3]-CGP 12177A (1-200 nM) binding in the presence of 500 nM (-)-propranolol was also saturable (pK(D) 7.6+/-0.1, B-max 50.8+/-7.4 fmol mg(-1) protein). 3 The non-conventional partial agonists (-)-CGP 12177A (pK(i) 7.3+/-0.2), (+/-)-cyanopindolol (pK(i) 7.6+/-0.2), (-)-pindolol (pK(i) 6.6+/-0.1) and (+)-carazolol (pk(i), 7.2+/-0.2) and the antagonist (-)-bupranolol (pK(i) 6.6+/-0.2), all competed for (-)-[H-3]-CGP 12177A binding in the presence of 500 nM (-)-propranolol at the 'putative beta(4)-adrenoceptor', with affinities closely similar to potencies and affinities determined in organ bath studies. 4 The catecholamines competed with (-)-[H-3]-CGP 12177A at the 'putative beta(4)-adrenoceptor' in a stereoselective manner, (-)-noradrenaline (pK(iH) 6.3 +/- 0.3, pK(i), 3.5 +/- 0.1), (-)-adrenaline (pK(iH) 6.5 +/- 0.2, pK(iL) 2.9 +/- 0.1), (-)-isoprenaline (pK(iH) 6.2 +/- 0.5, pK(iL) 3.3 +/- 0.1), (+)-isoprenaline (pK(i) < 1.7), (-)-R0363 ((-)-(1-(3,4-dimethoxyphenethylamino)-3-(3,4-dihydroxyphenoxy)-2-propranol)oxalate, pK(i) 5.5 +/- 0.1). 5 The inclusion of guanosine 5-triphosphate (GTP 0.1 mM) had no effect on binding of (-)-CGP 12177A or (-)-isoprenaline to the 'putative beta(4)-adrenoceptor'. In competition binding studies, (-)-CGP 12177A competed with (-)-[H-3]-CGP 12177A for one receptor state in the absence (pK(i) 7.3 +/- 0.2) or presence of GTP (pK(i) 7.3 +/- 0.2). (-)-Isoprenaline competed with (-)-[H-3]-CGP 12177A for two states in the absence (pK(iH) 6.6 +/- 0.3, pK(iL) 3.5 +/- 0.1; % H 25 +/- 7) or presence of GTP (pK(iH) 6.2 +/- 0.5, pK(iL) 3.4 +/- 0.1; % H 37 +/- 6). In contrast, at beta(1)-adrenoceptors, GTP stabilized the low affinity state of the receptor for (-)-isoprenaline. 6 The specificity of binding to the 'putative beta(4)-adrenoceptor' was tested with compounds active at other receptors. High concentrations of the beta(4)-adrenoceptor agonists, BRL 37344 ((RR + SS)[4-[2-[[2-(3-chlorophenyl)-2-hydroxy -ethyl]amino]propyl]phenoxy]acetic acid, 6 mu M), SR 58611A (ethyl((7S)-7-[(2R)-2-(3-chlorophenyl)-2-hydroxyethylamino]-5,6,7,8-tetrahydronaphtyl-2-yloxy) acetate hydrochloride, 6 mu M), ZD 2079 ((+/-)-1-phenyl-2-(2-4-carboxymethylphenoxy)-ethylamino)ethan-1-ol, 60 mu M), CL 316243 (disodium (R,R)-5-[2-[2-(3-chlorophenyl)-2-hydroxyethyl-amino]propyl]- 1,3-benzodioxole-2,2-dicarboxylate, 60 mu M) and antagonist SR 59230A (3-(2-ethylphenoxy)-1-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-2S-2-propanol oxalate, 6 mu M) caused less than 22% inhibition of (-)-[H-3]-CGP 12177A binding in the presence of 500 nM (-)-propranolol. Histamine (1 mM), atropine (1 mu M), phentolamine (10 mu M), 5-HT(100 mu M) and the 5-HT4 receptor antagonist SE 207710 ((1-butyl-4-piperidinyl)-methyl 8-amino-7-iodo-1 ,4-benzodioxan-5-carboxylate, 10 nM) caused less than 26% inhibition of binding. 7 Non-conventional partial agonists, the antagonist (-)-bupranolol and catecholamines all competed for (-)-[H-3]-CGP 12177A binding in the absence of (-)-propranolol at beta(1)-adrenoceptors, with affinities (pK(i)) ranging from 1.6-3.6 log orders greater than at the 'putative beta(4)-adrenoceptor'. 8 We have established and validated a radioligand binding assay in rat atrium for the 'putative beta(4)-adrenoceptor' which is distinct from beta(1)-, beta(2)- and beta(3)-adrenoceptors. The stereoselective interaction with the catecholamines provides further support for the classification of the receptor as 'putative beta(4)-adrenoceptor'.
Resumo:
In this work the in-situ perfused rat liver has been used to examine the effect of changing the protein content of the perfusate on the hepatic extraction of O-acyl esters of salicylic acid. The hepatic availability (F) of these solutes was studied at a flow-rate of 30 mt min(-1) with perfusate albumin concentrations of 0, 2, and 4% w/v. The hepatic availability of the esters was shown to decrease with increasing carbon-chain length in the O-acyl group; for all the esters the hepatic availability increased with increasing albumin concentration in the perfusate. The dispersion-model-derived efficiency number (R-N) Of the esters was shown to increase with increasing lipophilicity and decrease with increasing albumin concentration in the perfusate. The unbound fraction (f(u),) of the esters decreased with lipophilicity. R-N/f(u), for acetylsalicylic acid remained relatively constant as the albumin concentration was increased. However, R-N/f(u), for n-pentanoyl- and n-hexanoylsalicylic acids increased significantly as albumin concentration increased from 0% to 4%. Thus, for the more lipophilic solutes (n-pentanoyl- and n-hexanoylsalicylic acids) the presence of albumin apparently facilitates the uptake of unbound solute relative to acetylsalicylic acid.
Resumo:
Our previous investigations of possible lung mechanisms underlying the effectiveness of nebulized morphine for the relief of dyspnoea, have shown a high density of non-conventional opioid binding sites in rat airways with similar binding characteristics (opioid alkaloid-sensitive, opioid peptide-insensitive) to that of putative mu(3)-opioid receptors on immune cells. To investigate whether these lung opioid binding sites are functional receptors, this study was designed to determine (using superfusion) whether morphine modulates the K+-evoked release of the pro-inflammatory neuropeptide, substance P (SP), from rat peripheral airways. Importantly, K+-evoked SP release was Ca2+-dependent, consistent with vesicular release. Submicromolar concentrations of morphine (1 and 200 nM) inhibited K+-evoked SP release from rat peripheral airways in a naloxone (1 mu M) reversible manner. By contrast, 1 mu M morphine enhanced K+-evoked SP release and this effect was not reversed by 1 mu M naloxone. However, 100 mu M naloxone not only antagonized the facilitatory effect of 1 mu M morphine on K+-evoked SP release from rat peripheral airways but it inhibited release to a similar extent as 200 nM morphine. It is possible that these latter effects are mediated by non-conventional opioid receptors located on mast cells, activation of which causes naloxone-reversible histamine release that in turn augments the release of SP from sensory nerve terminals in the peripheral airways. Clearly, further studies are required to investigate this possibility. (C) 1997 Academic Press Limited.
Resumo:
Background/Aims: Liver clearance models are based on information (or assumptions) on solute distribution kinetics within the microvasculatory system, The aim was to study albumin distribution kinetics in regenerated livers and in livers of normal adult rats, Methods: A novel mathematical model was used to evaluate the distribution space and the transit time dispersion of albumin in livers following regeneration after a two-thirds hepatectomy compared to livers of normal adult rats. Outflow curves of albumin measured after bolus injection in single-pass perfused rat livers were analyzed by correcting for the influence of catheters and fitting a long-tailed function to the data. Results: The curves were well described by the proposed model. The distribution volume and the transit time dispersion of albumin observed in the partial hepatectomy group were not significantly different from livers of normal adult rats. Conclusions: These findings suggest that the distribution space and the transit time dispersion of albumin (CV2) is relatively constant irrespective of the presence of rapid and extensive repair. This invariance of CV2 implies, as a first approximation, a similar degree of intrasinusoidal mixing, The finding that a sum of two (instead of one) inverse Gaussian densities is an appropriate empirical function to describe the outflow curve of vascular indicators has consequences for an improved prediction of hepatic solute extraction.
Resumo:
The purpose of this study was to determine the relationship between ornithine decarboxylase activity (ODC; a marker for perturbed cell development), the blood alcohol level, and alcohol-induced microencephaly in the developing rat brain after binge treatment with ethanol vapour. By manipulating ethanol flow we were able to adjust vapour concentrations (24-65 mg ethanol/l air) such that an acute exposure of ethanol vapour for 3 h resulted in a range of blood alcohol levels (2.3-5.5 mg/ml). Acute studies showed that ethanol dose-dependently inhibited rat hippocampal and cerebellar ODC activity at PND4-PND10. There was a significant correlation between the blood alcohol level and degree of inhibition at all ages tested. Chronic treatment from PND4 to PND9 caused a significant decrease in both brain to body weight ratio and in hippocampal and cerebellar ODC activities at PND10. These results indicate that ethanol-induced disruption in ODC could play a significant role in ethanol's teratogenic effects during early postnatal development. (C) 1998 Elsevier Science Inc.
Resumo:
The effects of nitric oxide (NO) and other cysteine modifying agents were examined on cyclic nucleotide-gated (CNG) cation channels from rat olfactory receptor neurons. The NO compounds, S-nitroso-cysteine (SNC) and 3-morpholino-sydnonomine (SIN-1), did not activate the channels when applied for up to 10 min. The cysteine alkylating agent, N-ethylmaleimide (NEM), and the oxidising agent, dithionitrobensoate (DTNB), were also without agonist efficacy. Neither SNC nor DTNB altered the cAMP sensitivity of the channels. However, 2-min applications of SIN-1, SNC and DTNB inhibited the cAMP-gated current to approximately 50% of the control current level. This inhibition showed no spontaneous reversal for 5 min but was completely reversed by a 2-min exposure to DTT. The presence of cAMP protected the channels against NO-induced inhibition. These results indicate that inhibition is caused by S-nitrosylation of neighboring sulfhydryl groups leading to sulfhydryl bond formation. This reaction is favored in the closed channel state. Since recombinantly expressed rat olfactory alpha and beta CNG channel homomers and alpha/beta heteromers are activated and not inhibited by cysteine modification, the results of this study imply the existence of a novel subunit or tightly bound factor which dominates the effect of cysteine modification in the native channels. As CNG channels provide a pathway for calcum influx, the results may also have important implications for the physiological role of NO in mammalian olfactory receptor neurons.
Resumo:
The mRNA differential display technique was used to compare mRNAs between normal mammary gland and turner-derived epithelial cells from female Sprague-Dawley rat mammary gland tumors induced by the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by a high-fat diet (23.5% corn oil). Two genes, beta-casein and transferrin, were identified as differentially expressed. The expression of these genes was examined across a bank of rat mammary gland tumors derived from animals on a low-fat diet (5% corn oil) or the high-fat diet. Carcinomas had over a 10- and 50-fold lower expression of beta-casein and transferrin, respectively than normal mammary gland. In addition, carcinomas from animals on the high-fat diet showed on average a 5-fold higher expression of beta-casein, and transferrin than carcinomas from animals on the low-fat diet. The results indicate the process of mammary gland tumorigenesis alters the expression of certain genes in the mammary gland, and that the level of dietary fat further modulates the expression of these genes.