9 resultados para Rapid evolution

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian transcriptome contains many nonprotein-coding RNAs (ncRNAs), but most of these are of unclear significance and lack strong sequence conservation, prompting suggestions that they might be non-functional. However, certain long functional ncRNAs such as Air and Xist are also poorly conserved. In this article, we systematically analyzed the conservation of several groups of functional ncRNAs, including miRNAs, snoRNAs and longer ncRNAs whose function has been either documented or confidently predicted. As expected, miRNAs and snoRNAs were highly conserved. By contrast, the longer functional non-micro, non-sno ncRNAs were much less conserved with many displaying rapid sequence evolution. Our findings suggest that longer ncRNAs are under the influence of different evolutionary constraints and that the lack of conservation displayed by the thousands of candidate ncRNAs does not necessarily signify an absence of function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alignments of homologous genomic sequences are widely used to identify functional genetic elements and study their evolution. Most studies tacitly equate homology of functional elements with sequence homology. This assumption is violated by the phenomenon of turnover, in which functionally equivalent elements reside at locations that are nonorthologous at the sequence level. Turnover has been demonstrated previously for transcription-factor-binding sites. Here, we show that transcription start sites of equivalent genes do not always reside at equivalent locations in the human and mouse genomes. We also identify two types of partial turnover, illustrating evolutionary pathways that could lead to complete turnover. These findings suggest that the signals encoding transcription start sites are highly flexible and evolvable, and have cautionary implications for the use of sequence-level conservation to detect gene regulatory elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allopatric speciation results from geographic isolation between populations. In the absence of gene flow, reproductive isolation arises gradually and incidentally as a result of mutation, genetic drift and the indirect effects of natural selection driving local adaptation(1-3). In contrast, speciation by reinforcement is driven directly by natural selection against maladaptive hybridization(1,4). This gives individuals that choose the traits of their own lineage greater fitness, potentially leading to rapid speciation between the lineages(1,4). Reinforcing natural selection on a population of one of the lineages in a mosaic contact zone could also result in divergence of the population from the allopatric range of its own lineage outside the zone(4-6). Here we test this with molecular data, experimental crosses, field measurements and mate choice experiments in a mosaic contact zone between two lineages of a rainforest frog. We show that reinforcing natural selection has resulted in significant premating isolation of a population in the contact zone not only from the other lineage but also, incidentally, from the closely related main range of its own lineage. Thus we show the potential for reinforcement to drive rapid allopatric speciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete vertebrate genome sequencing has revealed a remarkable stability and uniformity in the protein-coding gene set, which at first glance might suggest that gene duplication events are relatively rare. This may be a red herring, or at least a red cichlid, as the Lake Malawi cichlid fishes show rapid and extensive duplication and diversification of their retinal cone photoreceptor opsin genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This paper describes SeqDoC, a simple, web-based tool to carry out direct comparison of ABI sequence chromatograms. This allows the rapid identification of single nucleotide polymorphisms (SNPs) and point mutations without the need to install or learn more complicated analysis software. Results: SeqDoC produces a subtracted trace showing differences between a reference and test chromatogram, and is optimised to emphasise those characteristic of single base changes. It automatically aligns sequences, and produces straightforward graphical output. The use of direct comparison of the sequence chromatograms means that artefacts introduced by automatic base-calling software are avoided. Homozygous and heterozygous substitutions and insertion/deletion events are all readily identified. SeqDoC successfully highlights nucleotide changes missed by the Staden package 'tracediff' program. Conclusion: SeqDoC is ideal for small-scale SNP identification, for identification of changes in random mutagenesis screens, and for verification of PCR amplification fidelity. Differences are highlighted, not interpreted, allowing the investigator to make the ultimate decision on the nature of the change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly localized positive-energy states of the free Dirac electron are constructed and shown to evolve in a simple way under the action of Dirac's equation. When the initial uncertainty in position is small on the scale of the Compton wavelength, there is an associated uncertainty in the mean energy that is large compared with the rest mass of the electron. However, this does not lead to any breakdown of the one-particle description, associated with the possibility of pair-production, but rather leads to a rapid expansion of the probability density outwards from the point of localization, at speeds close to the speed of light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable, comparable information about the main causes of disease and injury in populations, and how these are changing, is a critical input for debates about priorities in the health sector. Traditional sources of information about the descriptive epidemiology of diseases, injuries and risk factors are generally incomplete, fragmented and of uncertain reliability and comparability. Lack of a standardized measurement framework to permit comparisons across diseases and injuries, as well as risk factors, and failure to systematically evaluate data quality have impeded comparative analyses of the true public health importance of various conditions and risk factors. As a consequence the impact of major conditions and hazards on population health has been poorly appreciated, often leading to a lack of public health investment. Global disease and risk factor quantification improved dramatically in the early 1990s with the completion of the first Global Burden of Disease Study. For the first time, the comparative importance of over 100 diseases and injuries, and ten major risk factors, for global and regional health status could be assessed using a common metric (Disability-Adjusted Life Years) which simultaneously accounted for both premature mortality and the prevalence, duration and severity of the non-fatal consequences of disease and injury. As a consequence, mental health conditions and injuries, for which non-fatal outcomes are of particular significance, were identified as being among the leading causes of disease/injury burden worldwide, with clear implications for policy, particularly prevention. A major achievement of the Study was the complete global descriptive epidemiology, including incidence, prevalence and mortality, by age, sex and Region, of over 100 diseases and injuries. National applications, further methodological research and an increase in data availability have led to improved national, regional and global estimates for 2000, but substantial uncertainty around the disease burden caused by major conditions, including, HIV, remains. The rapid implementation of cost-effective data collection systems in developing countries is a key priority if global public policy to promote health is to be more effectively informed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative genetics provides a powerful framework for studying phenotypic evolution and the evolution of adaptive genetic variation. Central to the approach is G, the matrix of additive genetic variances and covariances. G summarizes the genetic basis of the traits and can be used to predict the phenotypic response to multivariate selection or to drift. Recent analytical and computational advances have improved both the power and the accessibility of the necessary multivariate statistics. It is now possible to study the relationships between G and other evolutionary parameters, such as those describing the mutational input, the shape and orientation of the adaptive landscape, and the phenotypic divergence among populations. At the same time, we are moving towards a greater understanding of how the genetic variation summarized by G evolves. Computer simulations of the evolution of G, innovations in matrix comparison methods, and rapid development of powerful molecular genetic tools have all opened the way for dissecting the interaction between allelic variation and evolutionary process. Here I discuss some current uses of G, problems with the application of these approaches, and identify avenues for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.