35 resultados para Random time change
em University of Queensland eSpace - Australia
Resumo:
This paper proposes some variants of Temporal Defeasible Logic (TDL) to reason about normative modifications. These variants make it possible to differentiate cases in which, for example, modifications at some time change legal rules but their conclusions persist afterwards from cases where also their conclusions are blocked.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.
Resumo:
We demonstrate that the process of generating smooth transitions Call be viewed as a natural result of the filtering operations implied in the generation of discrete-time series observations from the sampling of data from an underlying continuous time process that has undergone a process of structural change. In order to focus discussion, we utilize the problem of estimating the location of abrupt shifts in some simple time series models. This approach will permit its to address salient issues relating to distortions induced by the inherent aggregation associated with discrete-time sampling of continuous time processes experiencing structural change, We also address the issue of how time irreversible structures may be generated within the smooth transition processes. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Since their discovery 150 years ago, Neanderthals have been considered incapable of behavioural change and innovation. Traditional synchronic approaches to the study of Neanderthal behaviour have perpetuated this view and shaped our understanding of their lifeways and eventual extinction. In this thesis I implement an innovative diachronic approach to the analysis of Neanderthal faunal extraction, technology and symbolic behaviour as contained in the archaeological record of the critical period between 80,000 and 30,000 years BP. The thesis demonstrates patterns of change in Neanderthal behaviour which are at odds with traditional perspectives and which are consistent with an interpretation of increasing behavioural complexity over time, an idea that has been suggested but never thoroughly explored in Neanderthal archaeology. Demonstrating an increase in behavioural complexity in Neanderthals provides much needed new data with which to fuel the debate over the behavioural capacities of Neanderthals and the first appearance of Modern Human Behaviour in Europe. It supports the notion that Neanderthal populations were active agents of behavioural innovation prior to the arrival of Anatomically Modern Humans in Europe and, ultimately, that they produced an early Upper Palaeolithic cultural assemblage (the Châtelperronian) independent of modern humans. Overall, this thesis provides an initial step towards the development of a quantitative approach to measuring behavioural complexity which provides fresh insights into the cognitive and behavioural capabilities of Neanderthals.
Resumo:
The aim of this paper is to examine distributions of schizophrenia and general population births over time in order to determine whether (a) the pattern has changed over time, (b) any pattern was similar for both males and females, and (c) whether there is any indication that there is any relationship between the changes in pattern between schizophrenia and general population births. Birth month and year for 7807 individuals with ICD8/9 schizophrenia were gained from the Queensland Mental Health Statistical System for 1914-1975. Monthly births for the general population in Queensland for the same period were obtained from the Australian Bureau of Statistics. For each decade we obtained two comparisons, (1) between two 'seasons' (summer-autumn/winter-spring), and (2) between the third (coldest) quarter and the remaining quarters. Based on expected contrasts from general population proportions, odds ratios and their confidence intervals were used to analyse these comparisons for all subjects, and for males and females separately. The seasonality found in our previous studies was again evident (OR 1.09; 95% CI= 1.01-1.17). However there was no significant change in its pattern over time either for the total group or for males and females separately. When the general population births alone were examined using the same contrasts, seasonality was also observed, but here there were fluctuations over time. These results suggest that exposures linked to changes in general population births over time should be examined in disorders such as schizophrenia which demonstrate seasonality in births. The Stanley Foundation supported this project.
Resumo:
We develop a test of evolutionary change that incorporates a null hypothesis of homogeneity, which encompasses time invariance in the variance and autocovariance structure of residuals from estimated econometric relationships. The test framework is based on examining whether shifts in spectral decomposition between two frames of data are significant. Rejection of the null hypothesis will point not only to weak nonstationarity but to shifts in the structure of the second-order moments of the limiting distribution of the random process. This would indicate that the second-order properties of any underlying attractor set has changed in a statistically significant way, pointing to the presence of evolutionary change. A demonstration of the test's applicability to a real-world macroeconomic problem is accomplished by applying the test to the Australian Building Society Deposits (ABSD) model.
Resumo:
A two-component survival mixture model is proposed to analyse a set of ischaemic stroke-specific mortality data. The survival experience of stroke patients after index stroke may be described by a subpopulation of patients in the acute condition and another subpopulation of patients in the chronic phase. To adjust for the inherent correlation of observations due to random hospital effects, a mixture model of two survival functions with random effects is formulated. Assuming a Weibull hazard in both components, an EM algorithm is developed for the estimation of fixed effect parameters and variance components. A simulation study is conducted to assess the performance of the two-component survival mixture model estimators. Simulation results confirm the applicability of the proposed model in a small sample setting. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Pulse oximetry is commonly used as an arterial blood oxygen saturation (SaO(2)) measure. However, its other serial output, the photoplethysmography (PPG) signal, is not as well studied. Raw PPG signals can be used to estimate cardiovascular measures like pulse transit time (PTT) and possibly heart rate (HR). These timing-related measurements are heavily dependent on the minimal variability in phase delay of the PPG signals. Masimo SET (R) Rad-9 (TM) and Novametrix Oxypleth oximeters were investigated for their PPG phase characteristics on nine healthy adults. To facilitate comparison, PPG signals were acquired from fingers on the same hand in a random fashion. Results showed that mean PTT variations acquired from the Masimo oximeter (37.89 ms) were much greater than the Novametrix (5.66 ms). Documented evidence suggests that I ms variation in PTT is equivalent to I mmHg change in blood pressure. Moreover, the PTT trend derived from the Masimo oximeter can be mistaken as obstructive sleep apnoeas based on the known criteria. HR comparison was evaluated against estimates attained from an electrocardiogram (ECG). Novametrix differed from ECG by 0.71 +/- 0.58% (p < 0.05) while Masimo differed by 4.51 +/- 3.66% (p > 0.05). Modem oximeters can be attractive for their improved SaO(2) measurement. However, using raw PPG signals obtained directly from these oximeters for timing-related measurements warrants further investigations.
Resumo:
This study investigates the effects of morningness-eveningness orientation and time-of-day on persuasion. In an attitude change paradigm, 120 female participants read a persuasive message that consisted of six counter-attitudinal arguments (anti-voluntary euthanasia) either in the morning (8:30 a.m.) or in the evening (7:00 p.m.). Attitude change was assessed by measuring attitudes towards the target issue before and after exposure to the message. Message processing was assessed by thought-listing and message recall tasks. Self-reported mood and arousal were monitored throughout. Participants were classified into M- and E-types according to their scores on the Horne and Ostberg (1976) MEQ questionnaire. When tested at their respective optimal time-of-day (i.e., morning for M-types/evening for E-types), M- and E-types reported higher energetic arousal, greater agreement with the message, greater message-congruent thinking, and a propensity for superior message recall compared to M- and E-types tested at their nonoptimal time-of-day (i.e., evening for M-types/morning for E-types). The attitude change in those tested at their optimal time-of-day was mediated by the level of message-congruent thinking. Results are interpreted in terms of the Elaboration Likelihood Model of persuasion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Business environments have become exceedingly dynamic and competitive in recent times. This dynamism is manifested in the form of changing process requirements and time constraints. Workflow technology is currently one of the most promising fields of research in business process automation. However, workflow systems to date do not provide the flexibility necessary to support the dynamic nature of business processes. In this paper we primarily discuss the issues and challenges related to managing change and time in workflows representing dynamic business processes. We also present an analysis of workflow modifications and provide feasibility considerations for the automation of this process.
Resumo:
Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P
Resumo:
Gauging data are available from numerous streams throughout Australia, and these data provide a basis for historical analysis of geomorphic change in stream channels in response to both natural phenomena and human activities. We present a simple method for analysis of these data, and a briefcase study of an application to channel change in the Tully River, in the humid tropics of north Queensland. The analysis suggests that this channel has narrowed and deepened, rather than aggraded: channel aggradation was expected, given the intensification of land use in the catchment, upstream of the gauging station. Limitations of the method relate to the time periods over which stream gauging occurred; the spatial patterns of stream gauging sites; the quality and consistency of data collection; and the availability of concurrent land-use histories on which to base the interpretation of the channel changes.
Resumo:
In the first of three experiments, 11 participants generated pronation and supination movements of the forearm, in time with an auditory metronome. The metronome frequency was increased in eight steps (0.25 Hz) from a base frequency of 1.75 Hz. On alternating trials, participants were required to coordinate either maximum pronation or maximum supination with each beat of the metronome. In each block of trials, the axis of rotation was either coincident with the long axis of the forearm, above this axis, or below this axis. The stability of the pronate-on-the-beat pattern, as indexed by the number of pattern changes, and the time of onset of pattern change, was greatest when the axis of rotation of the movement was below the long axis of the forearm. In contrast, the stability of the supinate-on-the-beat pattern was greatest when the axis of rotation of the movement was above the long axis of the forearm. In a second experiment, we examined how changes in the position of the axis of rotation alter the activation patterns of muscles that contribute to pronation and supination of the forearm. Variations in the relative dominance of the pronation and supination phases of the movement cycle across conditions were accounted for primarily by changes in the activation profile of flexor carpi radialis (FCR) and extensor carpi radialis longus (ECR). In the Final experiment we examined how these constraints impact upon the stability of bimanual coordination. Thirty-two participants were assigned at random to one of four conditions, each of which combined an axis of rotation configuration (bottom or top) for each limb. The participants generated both inphase (both limbs pronating simultaneously, and supinating simultaneously) and antiphase (left limb pronating and right limb supinating simultaneously, and vice versa) patterns of coordination. When the position of the axis of rotation was equivalent for the left and the right limb, transitions from antiphase to inphase patterns of coordination were Frequently observed. In marked contrast, when the position of the axis of rotation for the left and right limb was contradistinct, transitions From inphase to antiphase patterns of coordination occurred. The results demonstrated that when movements are performed in an appropriate mechanical context, inphase patterns of coordination are less stable than antiphase patterns.
Resumo:
The evolution of event time and size statistics in two heterogeneous cellular automaton models of earthquake behavior are studied and compared to the evolution of these quantities during observed periods of accelerating seismic energy release Drier to large earthquakes. The two automata have different nearest neighbor laws, one of which produces self-organized critical (SOC) behavior (PSD model) and the other which produces quasi-periodic large events (crack model). In the PSD model periods of accelerating energy release before large events are rare. In the crack model, many large events are preceded by periods of accelerating energy release. When compared to randomized event catalogs, accelerating energy release before large events occurs more often than random in the crack model but less often than random in the PSD model; it is easier to tell the crack and PSD model results apart from each other than to tell either model apart from a random catalog. The evolution of event sizes during the accelerating energy release sequences in all models is compared to that of observed sequences. The accelerating energy release sequences in the crack model consist of an increase in the rate of events of all sizes, consistent with observations from a small number of natural cases, however inconsistent with a larger number of cases in which there is an increase in the rate of only moderate-sized events. On average, no increase in the rate of events of any size is seen before large events in the PSD model.
Resumo:
While there is a developing understanding of the influence of sleep on cardiovascular autonomic activity in humans, there remain unresolved issues. In particular, the effect of time within the sleep period, independent of sleep stage, has not been investigated. Further, the influence of sleep on central sympathetic nervous system (SNS) activity is uncertain because results using the major method applicable to humans, the low frequency (LF) component of heart rate Variability (HRV), have been contradictory, and because the method itself is open to criticism. Sleep and cardiac activity were measured in 14 young healthy subjects on three nights. Data was analysed in 2-min epochs. All epochs meeting specified criteria were identified, beginning 2 h before, until 7 h after, sleep onset. Epoch values were allocated to 30-min bins and during sleep were also classified into stage 2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The measures of cardiac activity were heart irate (HR), blood pressure (BP), high frequency (HF) and LF components of HRV and pre-ejection period (PEP). During non-rapid eye movement (NREM) sleep autonomic balance shifted from sympathetic to parasympathetic dominance, although this appeared to be more because of a shift in parasympathetic nervous system (PNS) activity. Autonomic balance during REM was in general similar to wakefulness. For BP and the HF and LF components the change occurred abruptly at sleep onset and was then constant over time within each stage of sleep, indicating that any change in autonomic balance over the sleep period is a consequence of the changing distribution of sleep stages. Two variables, HR and PEP, did show time effects reflecting a circadian influence over HR and perhaps time asleep affecting PEP. While both the LF component and PEP showed changes consistent with reduced sympathetic tone during sleep, their pattern of change over time differed.