2 resultados para Ramp rate constraints

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic rheological behaviour of starch-honey systems was studied using a strain-controlled rheometer. A dynamic temperature (30-130 degreesC) ramp test was used at 10 rad s(-1) frequency, 1% strain, 2 degreesC min(-1) ramp rate, 25 mm parallel plate, and 1.5 min gap, using Wheaten cornflour(TM) and five honeys to generate 25 formulations (0.34-0.80 g water/g dry starch). G', G, and eta* increased upon gelatinisation, and they reduced as the honey content was increased. For all the formulations, G' was higher than G, and tan 6 was generally less than 1.0. Key gelatinisation characterising temperatures (onset, peak and end) ranged from 96.0 to 122.3 degreesC, but did not vary much (CV < 5%) for each honey irrespective of the concentration. The influence of water, fructose and glucose, singly and in combination, on gelatinisation indices (temperature and rheological parameters) was investigated. An exponential equation was employed to describe the relationship, and relevant parameters were obtained. The consequences of the observations in the study are discussed particularly as they relate to extrusion of such systems, and possible interactions between fructose and glucose in the starch-honey systems. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ar-40/Ar-39 incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 in depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3-5 wt.%) yield reliable geochronological results. The Ar-40/Ar-39 plateau ages obtained decrease from the top to the bottom of the profile (12.7 +/- 0.1 to 7.6 +/- 0.1 Ma at surface; 7.6 +/- 0.2 to 6.1 +/- 0.2 Ma at 42 m; and 7.1 +/- 0.2 to 5.9 +/- 0.1 Ma at 45 in; 6.6 +/- 0.1 to 5.2 +/- 0.1 Ma at 60 in), yielding a weathering front propagation rate of 8.9 +/- 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and scbists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 +/- 3.1 t/km(2)/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with longterm saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations. (c) 2005 Elsevier B.V All rights reserved.