28 resultados para Raft

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein. Rather, approximate to 30% of the raft protein exists in cholesterol-dependent nanoclusters, with approximate to 70% distributed as monomers. The cluster/monomer ratio (number of proteins in clusters/number of proteins outside clusters) is independent of expression level. H-rasG12V and K-rasG12V proteins also operate in nanoclusters with fixed cluster/monomer ratios that are independent of expression level. Detailed calibration of the immunogold imaging protocol suggests that radii of raft and RasG12V protein nanoclusters may be as small as 11 and 6 nm, respectively, and shows that the nanoclusters contain small numbers (6.0-7.7) of proteins. Raft nanoclusters do not form if the actin cytoskeleton is disassembled. The formation of K-rasG12V but not H-rasG12V nanoclusters also is actin-dependent. K-rasG12V but not H-rasG12V signaling is abrogated by actin cytoskeleton disassembly, which shows that nanoclustering is critical for Ras function. These findings argue against stable preexisting domains on the inner plasma membrane in favor of dynamic actively regulated nanoclusters similar to those proposed for the outer plasma membrane. RasG12V nanoclusters may facilitate the assembly of essential signal transduction complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor alpha(TNF alpha) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNF alpha is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor ( SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasma membrane, and we investigated a possible role for lipid rafts in TNF alpha trafficking and secretion. TNF alpha surface delivery and secretion were found to be cholesterol-dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasma membrane, particularly on filopodia. Imaging the early stages of TNF alpha surface distribution revealed these puncta to be the initial points of TNF alpha delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol-dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work has demonstrated that for the first time a single RAFT agent (i. e., difunctional) can be used in conjunction with a radical initiator to obtain a desired M-n and PDI with controlled rates of polymerization. Simulations were used not only to verify the model but also to provide us with a predictive tool to generate other MWDs. It was also shown that all the MWDs prepared in this work could be translated to higher molecular weights through chain extension experiments with little or no compromise in the control of end group functionality. The ratio of monofunctional to difunctional SdC(CH2Ph)S- end groups, XPX and XP (where X) S=C(CH2Ph) S-), can be controlled by simply changing the concentration of initiator, AIBN. Importantly, the amount of dead polymer is extremely low and fulfils the criterion as suggested by Szwarc (Nature 1956) that to meet living requirements nonfunctional polymeric species formed by side reactions in the process should be undetectable by analytical techniques. In addition, this novel methodology will allow the synthesis of AB, ABA, and statistical multiblock copolymers with predetermined ratios to be produced in a one-pot reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the successful RAFT-mediated emulsion polymerization of styrene using a non-ionic surfactant (Brij98), the highly reactive 1-phenylethyl phenyldithioacetate (PEPDTA) RAFT agent, and water-soluble initiator ammonium persulfate (APS). The molar ratio of RAFT agent to APS was identical in all experiments. Most of the monomer was contained within the micelles, analogous to microemulsion or miniemulsion systems but without the need of shear, sonication, cosurfactant, or a hydrophobe. The number-average molecular weight increased with conversion and the polydispersity index was below 1.2. This ideal 'living' behavior was only found when molecular weights of 9000 and below were targeted. It was postulated that the rapid transportation of RAFT agent from the monomer swollen micelles to the growing particles was fast on the polymerization timescale, and most if not all the RAFT agent is consumed within the first 10% conversion. In addition, it was postulated that the high nucleation rate from the high rate of exit ( of the R radical from the RAFT agent) and high entry rate from water-phase radicals ( high APS concentration) reduced the effects of 'superswelling' and therefore a similar molar ratio of RAFT agent to monomer was maintained in all growing particles. The high polydispersity indexes found when targeting molecular weights greater than 9000 were postulated to be due to the lower nucleation rate from the lower weight fractions of both APS and RAFT agent. In these cases, 'superswelling' played a dominant role leading to a heterogeneous distribution of RAFT to monomer ratios among the particles nucleated at different times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations into the kinetics and mechanism of dithiobenzoate-mediated Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerizations, which exhibit nonideal kinetic behavior, such as induction periods and rate retardation, are comprehensively reviewed. The appreciable uncertainty in the rate coefficients associated with the RAFT equilibrium is discussed and methods for obtaining RAFT-specific rate coefficients are detailed. In addition, mechanistic studies are presented, which target the elucidation of the fundamental cause of rate retarding effects. The experimental and theoretical data existing in the literature are critically evaluated and apparent discrepancies between the results of different studies into the kinetics of RAFT polymerizations are discussed. Finally, recommendations for further work are given. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy) ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous and preirradiation grafting of styrene onto fluorinated polyolefins does not enable control of the molecular weights or polydispersities of the styrene grafts. The nitroxide-mediated grafting of styrene onto PFA with TEMPO and TEISO using a preirradiation method has been investigated as a means of controlling the graft properties and especially to produce grafts with improved suitability for SPOC. The yields of graft were found to be in the range 15-20% for nitroxide concentrations between 5 x 10(-3) and 2 x 10(-2) M and were similar for the two nitroxides studied. Raman mapping was used to obtain the depth profile for the styrene grafts. The grafts were found to be principally located within the PFA substrate, and little graft was formed at the PFA surface. Fmoc loading tests were performed to assess the suitability of the grafted PFA as a support for SPOC, but these showed no significant loading was achieved, thus indicating that the graft properties are not suitable for SPOC. However, the study has important implications for the applications of PFA-grafted polymers in other areas, such as chemically resistant ion-exchange and separation membranes.