21 resultados para Rabbit breeds
em University of Queensland eSpace - Australia
Resumo:
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hernoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Purpose: To evaluate the efficacy of hyperbaric oxygen therapy in the treatment of alkali-induced corneal burns in an animal model. Methods: Twenty-four rabbits were randomized into a control group (n = 12) and hyperbaric oxygen treatment group (n = 12). After induction of anaesthesia, the alkali burn model was established by application of 1 N sodium hydroxide to one eye of each rabbit. The hyperbaric oxygen treatment group was treated each day for 21 days with hyperbaric oxygen at 2.4 Atmospheres Absolute (ATA) for 1 h. The eyes of the animals were examined daily for 2 weeks and then weekly until the end of the trial. The principal endpoint was that of perforation of the cornea at which time the animals were killed with a lethal dose of either intravenous or intraperitoneal barbiturate and the eyes immediately enucleated and fixed in 10% neutral buffered formalin. All animals in which complete healing took placed were also killed, the eyes removed, fixed and examined histologically. Photographs were taken of the rabbit's eyes at weekly intervals and the area of vascularization and epithelial defects in the hyperbaric and control groups were compared. Results: Equal numbers (seven) of the control and hyperbaric oxygen treated groups had perforated corneas and there was no statistical difference in the mean time to perforation (control 30.1 days; treated 30 days). There was also no statistical difference between the two groups with respect to epithelial defect size. Conclusion: Treatment with hyperbaric oxygen for 1 h daily for 21 days had no beneficial effect on alkali-induced corneal burns.
Type 1 nitrergic (ND1) cells of the rabbit retina: Comparison with other axon-bearing amacrine cells
Resumo:
NADPH diaphorase (NADPHd) histochemistry labels two types of nitrergic amacrine cells in the rabbit retina. Both the large ND1 cells and the small ND2 cells stratify in the middle of the inner plexiform layer, and their overlapping processes produce a dense plexus, which makes it difficult to trace the morphology of single cells. The complete morphology of the ND1 amacrine cells has been revealed by injecting Neurobiotin into large round somata in the inner nuclear layer, which resulted in the labelling of amacrine cells whose proximal morphology and stratification matched those of the ND1 cells stained by NADPHd histochemistry. The Neurobiotin-injected ND1 cells showed strong homologous tracer coupling to surrounding ND1 cells, and double-labelling experiments confirmed that these coupled cells showed NADPHd reactivity. The ND1 amacrine cells branch in stratum 3 of the inner plexiform layer, where they produce a sparsely branched dendritic tree of 400-600 mum diameter in ventral peripheral retina. In addition, each cell gives rise to several fine beaded processes, which arise either from a side branch of the dendritic tree or from the tapering of a distal dendrite. These axon-like processes branch successively within the vicinity of the dendritic field before extending, with little or no further branching, for 3-5 mm from the soma in ventral peripheral retina. Consequently, these cells may span one-third of the visual field of each eye, and their spatial extent appears to be greater than that of most other types of axon-bearing amacrine cells injected with Neurobiotin in this study. The morphology and tracer-coupling pattern of the ND1 cells are compared with those of confirmed type 1 catecholaminergic cells, a presumptive type 2 catecholaminergic cell, the type 1 polyaxonal. cells, the long-range amacrine cells, a novel type of axon-bearing cell that also branches in stratum 3, and a type of displaced amacrine cell that may correspond to the type 2 polyaxonal cell. (C) 2004 Wiley-Liss, Inc.
Resumo:
The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing amacrine cell whose soma commonly occupies an interstitial position in the inner plexiform layer; the proximal branches of the sparse dendritic tree produce 1-4 axon-like processes, which form an extensive axonal arbor that is concentric with the smaller dendritic tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular injections of Neurobiotin have revealed the complete dendritic and axonal morphology of the PA1 cells in the rabbit retina, as well as labeling the local array of PA1 cells through homologous tracer coupling. The dendritic-field area of the PA1 cells increased from a minimum of 0.15 mm(2) (0.44-mm equivalent diameter) on the visual streak to a maximum of 0.67 mm(2) (0.92-mm diameter) in the far periphery; the axonal-field area also showed a 3-fold variation across the retina, ranging from 3.1 mm(2) (2.0-mm diameter) to 10.2 mm(2) (3.6-mm diameter). The increase in dendritic- and axonal-field size was accompanied by a reduction in cell density, from 60 cells/mm(2) in the visual streak to 20 cells/mm(2) in the far periphery, so that the PA1 cells showed a 12 times overlap of their dendritic fields across the retina and a 200-300 times overlap of their axonal fields. Consequently, the axonal plexus was much denser than the dendritic plexus, with each square millimeter of retina containing similar to100 mm of dendrites and similar to1000 mm of axonal processes. The strong homologous tracer coupling revealed that similar to45% of the PA1 somata were located in the inner nuclear layer, similar to50% in the inner plexiform layer, and similar to5% in the ganglion cell layer. In addition, the Neurobiotin-injected PA1 cells sometimes showed clear heterologous tracer coupling to a regular array of small ganglion cells, which were present at half the density of the PA1 cells. The PA1 cells were also shown to contain elevated levels of gamma-aminobutyric acid (GABA), like other axon-bearing amacrine cells.
Resumo:
The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.
Resumo:
A study was conducted to investigate the persistence of rabbit haemorrhagic disease virus (RHDV) in the environment. Virus was impregnated onto two carrier materials (cotton tape and bovine liver) and exposed to environmental conditions on pasture during autumn in New Zealand. Samples were collected after 1, 10, 44 and 91 days and the viability of the virus was determined by oral inoculation of susceptible 11- to 14-week-old New Zealand White rabbits. Evidence of RHDV infection was based on clinical and pathological signs and/or seroconversion to RHDV. Virus impregnated on cotton tape was viable at 10 days of exposure but not at 44 days, while in bovine liver it was still viable at 91 days. The results of this study suggest that RHDV in animal tissues such as rabbit carcasses can survive for at least 3 months in the field, while virus exposed directly to environmental conditions, such as dried excreted virus, is viable for a period of less than I month. Survival of RHDV in the tissues of dead animals could, therefore, provide a persistent reservoir of virus, which could initiate new outbreaks of disease after extended delays.
Resumo:
This study investigated the comparative susceptibility of indigenous Moo Laat and improved Large White/Landrace pig breeds to infection with classical swine fever virus (CSFV) under controlled conditions in the Lao People's Democratic Republic (Lao PDR). The Moo Laat (ML) and Large White/Landrace crossbreed (LWC) pigs were inoculated with a standard challenge strain designated Lao/Kham225 (infectivity titre of 10(2.75) TCID50/ml). The results demonstrated that both the native breed and an improved pig breed are fully susceptible to CSFV infection and the mortality rate is high. LWC pigs demonstrated lower (or shorter) survival times (50% survival time: 11 days), earlier and higher pyrexia and earlier onset of viraemia compared to ML pigs (50% survival time: 18 days). In the context of village-based pig production, the longer time from infection to death in native ML pigs means that incubating or early sick pigs are likely to be sold once an outbreak of CSF is recognized in a village. This increased longevity probably contributes to the maintenance and spread of disease in a population where generally the contact rate is low.
Resumo:
As part of a longitudinal study of the epidemiology of rabbit haemorrhagic disease virus (RHDV) in New Zealand, serum samples were obtained from trapped feral animals that may have consumed European rabbit (Oryctolagus cuniculus) carcasses (non-target species). During a 21-month period when RHDV infection was monitored in a defined wild rabbit population, 16 feral house cats (Felis catus), 11 stoats (Mustela erminea), four ferrets (Mustela furo) and 126 hedgehogs (Erinaceus europaeus) were incidentally captured in the rabbit traps. The proportions of samples that were seropositive to RHDV were 38% for cats, 18% for stoats, 25% for ferrets and 4% for hedgehogs. Seropositive non-target species were trapped in April 2000, in the absence of an overt epidemic of rabbit haemorrhagic disease (RHD) in the rabbit population, but evidence of recent infection in rabbits was shown. Seropositive non-target species were found up to 2.5 months before and 1 month after this RHDV activity in wild rabbits was detected. Seropositive predators were also trapped on the site between 1 and 4.5 months after a dramatic RHD epidemic in February 2001. This study has shown that high antibody titres can be found in non-target species when there is no overt evidence of RHDV infection in the rabbit population, although a temporal relationship could not be assessed statistically owning to the small sample sizes. Predators and scavengers might be able to contribute to localised spread of RHDV through their movements.
Resumo:
A longitudinal capture-mark-recapture study was conducted to determine the temporal dynamics of rabbit haemorrhagic disease (RHD) in a European rabbit (Oryctolagus cuniculus) population of low to moderate density on sand-hill country in the lower North Island of New Zealand. A combination of sampling ( trapping and radio-tracking) and diagnostic (cELISA, PCR and isotype ELISA) methods was employed to obtain data weekly from May 1998 until June 2001. Although rabbit haemorrhagic disease virus ( RHDV) infection was detected in the study population in all 3 years, disease epidemics were evident only in the late summer or autumn months in 1999 and 2001. Overall, 20% of 385 samples obtained from adult animals older than 11 weeks were seropositive. An RHD outbreak in 1999 contributed to an estimated population decline of 26%. A second RHD epidemic in February 2001 was associated with a population decline of 52% over the subsequent month. Following the outbreaks, the seroprevalence in adult survivors was between 40% and 50%. During 2000, no deaths from RHDV were confirmed and mortalities were predominantly attributed to predation. Influx of seronegative immigrants was greatest in the 1999 and 2001 breeding seasons, and preceded the RHD epidemics in those years. Our data suggest that RHD epidemics require the population immunity level to fall below a threshold where propagation of infection can be maintained through the population.
Resumo:
Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta- ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light- On or light- Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors ( LEDs), which respond to spot illumination at both light- On and light- Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only similar to 15% of the ganglion cells, neighboring LEDs are separated by 30 - 40 mu m on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive- field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.
Resumo:
The cholinergic amacrine cells in the rabbit retina slowly accumulate glycine to very high levels when the tissue is incubated with excess sarcosine (methylglycine), even though these cells do not normally contain elevated levels of glycine and do not express high-affinity glycine transporters. Because the sarcosine also depletes the endogenous glycine in the glycine-containing amacrine cells and bipolar cells, the cholinergic amacrine cells can be selectively labeled by glycine immunocytochemistry under these conditions. Incubation experiments indicated that the effect of sarcosine on the cholinergic amacrine cells is indirect: sarcosine raises the extracellular concentration of glycine by blocking its re-uptake by the glycinergic amacrine cells, and the excess glycine is probably taken-up by an unidentified low-affinity transporter on the cholinergic amacrine cells. Neurobiotin injection of the On-Off direction-selective (DS) ganglion cells in sarcosine-incubated rabbit retina was combined with glycine immunocytochemistry to examine the dendritic relationships between the DS ganglion cells and the cholinergic amacrine cells. These double-labeled preparations showed that the dendrites of the DS ganglion cells closely follow the fasciculated dendrites of the cholinergic amacrine cells. Each ganglion cell dendrite located within the cholinergic strata is associated with a cholinergic fascicle and, conversely, there are few cholinergic fascicles that do not contain at least one dendrite from an On-Off DS cell. It is not known how the dendritic co-fasciculation develops, but the cholinergic dendritic plexus may provide the initial scaffold, because the dendrites of the On-Off DS cells commonly run along the outside of the cholinergic fascicles. J. Comp. Neurol. 421:1-13, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
We have characterized a distinctive type of bistratified amacrine cell in the rabbit retina at both the single cell and population levels. These cells correspond to the fountain amacrine cells recently identified by MacNeil and Masland (1998). The fountain cells can be distinguished in superfused retinal wholemounts labeled with nuclear dyes, thus enabling them to be targeted for intracellular injection with Neurobiotin. This revealed that the primary dendrites ascend steeply to sublamina b of the inner plexiform layer, where they form an irregular arbor at the border of strata 4 and 5. These dendrites then give rise to multiple varicose processes that descend obliquely to sublamina a, where they form a more extensive arbor in stratum 1. The fountain amacrine cells show strong homologous tracer coupling when injected with Neurobiotin, and this has enabled us to map their density distribution across the retina and to examine the dendritic relationships between neighboring cells. The fountain amacrine cells range in density from 90 to 360 cells/mm(2) and they account for 1.5% of the amacrine cells in the rabbit retina. The thick tapering dendrites in sublamina b form highly territorial arbors that tile the retina with minimal overlap, whereas the thin varicose processes intermingle in sublamina a. The fountain cells are immunopositive for gamma-aminobutyric acid and immunonegative for glycine. We further propose that these cells are homologous to the substance P-immunoreactive (SP-IR) amacrine cells in the cat retina and that they may account for a subset of the SP-IR amacrine cells in the rabbit retina.