16 resultados para RY-coding

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes and the range of genetic and epigenetic phenomena that are RNA-directed suggests that the traditional view of the structure of genetic regulatory systems in animals and plants may be incorrect. ncRNA dominates the genomic output of the higher organisms and has been shown to control chromosome architecture, mRNA turnover and the developmental timing of protein expression, and may also regulate transcription and alternative splicing. This paper re-examines the available evidence and suggests a new framework for considering and understanding the genomic programming of biological complexity, autopoletic development and phenotypic variation. BioEssays 25:930-939,2003. (C) 2003 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the psbA minicircle from Symbiodinium. DNA sequence was obtained from five Symbiodinium strains obtained from four different coral host species (Goniopora tenuidens, Heliofungia actiniformis, Leptastrea purpurea and Pocillopora damicornis), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or 'twin' formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of Amphidinium operculatum minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for Symbiodinium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence diversity in the coat protein coding region of Australian strains of Johnsongrass mosaic virus (JGMV) was investigated. Field isolates were sampled during a seven year period from Johnsongrass, sorghum and corn across the northern grain growing region. The 23 isolates were found to have greater than 94% nucleotide and amino acid sequence identity. The Australian isolates and two strains from the U.S.A. had about 90% nucleotide sequence identity and were between 19 and 30% different in the N-terminus of the coat protein. Two amino acid residues were found in the core region of the coat protein in isolates obtained from sorghum having the Krish gene for JGMV resistance that differed from those found in isolates from other hosts which did not have this single dominant resistance gene. These amino acid changes may have been responsible for overcoming the resistance conferred by the Krish gene for JGMV resistance in sorghum. The identification of these variable regions was essential for the development of durable pathogen-derived resistance to JGMV in sorghum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to identify possible disease-associated mutations in the canine homologue of the polycystic kidney disease gene 1 (PKD1) in Bull Terriers with autosomal dominant polycystic kidney disease. Messenger RNA was obtained from the blood or renal tissue of five Bull Terriers with the disease and four close relatives without the disease. Reverse transcription, PCR and 3' rapid amplification of cDNA ends were used to amplify the coding and 3' untranslated regions of this transcript. Comparison of PKD1 sequence between the affected and unaffected Bull Terriers, revealed six polymorphisms, but no disease-associated mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT; EC 2.4.2.8) is associated with a spectrum of disease that ranges from gouty arthritis (OMIM 300323) to the more severe Lesch-Nyhan syndrome (OMIM 300322). To date, all cases of HPRT deficiency have shown a mutation within the HPRT cDNA. In the present study of an individual with gout due to HPRT deficiency, we found a normal HPRT cDNA sequence. This is the first study to provide an example of HPRT deficiency which appears to be due to a defect in the regulation of the gene. © 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent large-scale analyses of mainly full-length cDNA libraries generated from a variety of mouse tissues indicated that almost half of all representative cloned sequences did flat contain ail apparent protein-coding sequence, and were putatively derived from non-protein-coding RNA (ncRNA) genes. However, many of these clones were singletons and the majority were unspliced, raising the possibility that they may be derived from genomic DNA or unprocessed pre-rnRNA contamination during library construction, or alternatively represent nonspecific transcriptional noise. Here we Show, using reverse transcriptase-dependent PCR, microarray, and Northern blot analyses, that many of these clones were derived from genuine transcripts Of unknown function whose expression appears to be regulated. The ncRNA transcripts have larger exons and fewer introns than protein-coding transcripts. Analysis of the genomic landscape around these sequences indicates that some cDNA clones were produced not from terminal poly(A) tracts but internal priming sites within longer transcripts, only a minority of which is encompassed by known genes. A significant proportion of these transcripts exhibit tissue-specific expression patterns, as well as dynamic changes in their expression in macrophages following lipopolysaccharide Stimulation. Taken together, the data provide strong support for the conclusion that ncRNAs are an important, regulated component of the mammalian transcriptome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term non-coding RNA (ncRNA) is commonly employed for RNA that does not encode a protein, but this does not mean that such RNAs do not contain information nor have function. Although it has been generally assumed that most genetic information is transacted by proteins, recent evidence suggests that the majority of the genomes of mammals and other complex organisms is in fact transcribed into ncRNAs, many of which are alternatively spliced and/or processed into smaller products. These ncRNAs include microRNAs and snoRNAs (many if not most of which remain to be identified), as well as likely other classes of yet-to-be-discovered small regulatory RNAs, and tens of thousands of longer transcripts (including complex patterns of interlacing and overlapping sense and antisense transcripts), most of whose functions are unknown. These RNAs (including those derived from introns) appear to comprise a hidden layer of internal signals that control various levels of gene expression in physiology and development, including chromatin architecture/epigenetic memory, transcription, RNA splicing, editing, translation and turnover. RNA regulatory networks may determine most of our complex characteristics, play a significant role in disease and constitute an unexplored world of genetic variation both within and between species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence suggests that the development and function of the nervous system is heavily dependent on RNA editing and the intricate spatiotemporal expression of a wide repertoire of non-coding RNAs, including micro RNAs, small nucleolar RNAs and longer non-coding RNAs. Non-coding RNAs may provide the key to understanding the multi-tiered links between neural development, nervous system function, and neurological diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once thought rare, primary aldosteronism (PAL) is now reported to be responsible for 5–10% of hypertension. Unlike familial hyperaldosteronism type I (FH-I), FH-II is not glucocorticoidremediable and not associated with the hybrid CYP11B1/CYP11B2 gene mutation. At least five times more common than FH-I, FH-II is clinically indistinguishable from apparently sporadic PAL, suggesting an even higher incidence. Studies performed in collaboration with C Stratakis (NIH, Bethesda) on our largest Australian family (eight affected members) demonstrated linkage at chromosome 7p22. Linkage at this region was also found in a South American family (DNA provided by MI New, Mount Sinai School of Medicine, New York) and in a second Australian family. The combined multipoint LOD score for these 3 families is 4.61 (q = 0) with markers D7S462 and D7S517, providing strong support for this locus harbouring mutations responsible for FH-II. A newly identified recombination event in our largest Australian family has narrowed the region of linkage by 1.8 Mb, permitting exclusion of approximately half the genes residing in the originally reported 5 Mb linked locus. Candidate genes that are involved in cell cycle control are of interest as adrenal hyperplasia and adrenal adenomas are common in FH-II patients. A novel candidate gene in this linked region produces the retinoblastoma-associated Kruppel-associated box protein (RBaK) which interacts with the retinoblastoma gene product to repress the expression of genes activated by members of the E2F family of transcription factors.