25 resultados para ROSTRAL VENTROLATERAL MEDULLA

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflarnmatory cytokine interleukin-1beta (1 mug/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transgenic mice expressing the E7 protein of HPV16 from the keratin 14 promoter demonstrate increasing thymic hypertrophy with age. This hypertrophy is associated with increased absolute numbers of all thymocyte types, and with increased cortical and medullary cellularity. In the thymic medulla, increased compartmentalization of the major thymic stromal cell types and expansion of thymic epithelial cell population is observed. Neither an increased rate of immature thymocyte division nor a decreased rate of immature thymocyte death was able to account for the observed hypertrophy. Thymocytes with reduced levels of expression of CD4 and/or CD8 were more abundant in transgenic (tg) mice and became increasingly more so with age. These thymic SP and DP populations with reduced levels of CD4 and/or CD8 markers had a lower rate of apoptosis in the tg than in the non-tg mice. The rate of export of mature thymocytes to peripheral lymphoid organs was less in tg animals relative to the pool of available mature cells, particularly for the increasingly abundant CD4lo population. We therefore suggest that mature thymocytes that would normally die in the thymus gradually accumulated in E7 transgenic animals, perhaps as a consequence of exposure to a hypertrophied E7-expressing thymic epithelium or to factors secreted by this expanded thymic stromal cell population. The K14E7 transgenic mouse thus provides a unique model to study effects of the thymic epithelial cell compartment on thymus development and involution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monogeneans Decacotyle lymmae and D. tetrakordyle (Monocotylidae: Decacotylinae), from gills of the dasyatid stingrays Taeniura lymma and Pastinachus sephen, respectively, have a single aperture for adhesive secretion on each side of the anterior ventrolateral region. Rod-shaped bodies (S1) and electron-dense spherical secretion (S2) exit through specialised ducts opening adjacent to one another within these apertures. The S1 bodies are 230 +/- 11 nm wide and greater than or equal to4 mum long in D. lymmae and 240 +/- 9 nm wide and greater than or equal to3.3 mum long in D. tetrakordyle. The S2 bodies have a diameter of 88 +/- 7 nm in D. lymmae and 65 +/- 6 nm in D. tetrakordyle. The apertures are unusual in being extremely small (internal diameter, 3-5 mum). Each aperture has a slit-like surface opening as small as 160 nm wide, surrounded by muscle fibres indicating that they may be opened and closed. The aperture is also surrounded and underlain by muscle fibres that may aid in secretion from, or even eversion of, the tissue within the aperture. Sensilla/cilia are also found within the apertures. Additional secretions from anteromedian and anterolateral glands (body glands), each containing granular secretions, occur in profusion and exit anteriorly and posteriorly to the position of the apertures, through duct openings in the general body tegument. These granular secretions do not appear to be associated with anterior adhesion. Both species show similarities in aperture, underlying tissue, sense organ, and secretion detail, in accordance with findings from other monogenean genera, and which supports the importance of such data for phylogenetic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied thalamic projections to the visual cortex in flying foxes, animals that share neural features believed to resemble those present in the brains of early primates. Neurones labeled by injections of fluorescent tracers in striate and extrastriate cortices were charted relative to the architectural boundaries of thalamic nuclei. Three main findings are reported: First, there are parallel lateral geniculate nucleus (LGN) projections to striate and extrastriate cortices. Second, the pulvinar complex is expansive, and contains multiple subdivisions. Third, across the visual thalamus, the location of cells labeled after visual cortex injections changes systematically, with caudal visual areas receiving their strongest projections from the most lateral thalamic nuclei, and rostral areas receiving strong projections from medial nuclei. We identified three architectural layers in the LGN, and three subdivisions of the pulvinar complex. The outer LGN layer contained the largest cells, and had strong projections to the areas V1, V2 and V3. Neurones in the intermediate LGN layer were intermediate in size, and projected to V1 and, less densely, to V2. The layer nearest to the origin of the optic radiation contained the smallest cells, and projected not only to V1, V2 and V3, but also, weakly, to the occipitotemporal area (OT, which is similar to primate middle temporal area) and the occipitoparietal area (OP, a third tier area located near the dorsal midline). V1, V2 and V3 received strong projections from the lateral and intermediate subdivisions of the pulvinar complex, while OP and OT received their main thalamic input from the intermediate and medial subdivisions of the pulvinar complex. These results suggest parallels with the carnivore visual system, and indicate that the restriction of the projections of the large- and intermediatesized LGN layers to V1, observed in present-day primates, evolved from a more generalized mammalian condition. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 theta, retinoic acid receptor-alpha, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 12-year-old male castrated Samoyed dog was presented with left-sided epistaxis and sneezing. Diagnostic procedures included haematology and biochemistry testing, thoracic radiography, fine needle aspiration of regional lymph nodes, CT, rhinoscopy, incisional biopsy and histopathology. Squamous cell carcinoma of the rostral nasal cavity was diagnosed, with no evidence of metastatic disease. External beam radiation was not an accessible treatment option. Complete surgical resection of the tumour would have required a larger, more disfiguring resection of nasal planum and maxilla than the owner was prepared to accept and may have been associated with an unacceptable morbidity. As an alternative, the extent of disease was reduced using a combination of carboplatin, doxorubicin and piroxicam chemotherapy. This allowed a less extensive nasal planum removal to be performed to remove residual disease with clean margins. The patient achieved a 14 month disease free interval from the time of surgery to the time of local recurrence. Survival time from diagnosis to eventual euthanasia for progressive local disease was 18 months.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1-7 (R1-R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1-4 are incorporated into the colour vision system formed by R1-R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested current hypotheses on the functional organization of the third visual complex, a particularly controversial region of the primate extrastriate cortex. In anatomical experiments, injections of retrograde tracers were placed in the dorsal cortex immediately rostral to the second visual area (V2) of New World monkeys (Callithrix jacchus), revealing the topography of interconnections between the third tier cortex and the primary visual area (V1). The data indicate the presence of a dorsomedial area (DM), which represents the entire upper and lower quadrants of the visual field, and which receives strong, topographically organized projections from the superficial layers of V1. The visuotopic organization and boundaries of DM were confirmed by electrophysiological recordings in the same animals and by architectural characteristics which were distinct from those found in ventral extrastriate cortex rostral to V2. There was no electrophysiological or histological evidence for a transitional area between V2 and DM. In particular, the central representation of the upper quadrant in DM was directly adjacent to the representation of the horizontal meridian that marks the rostral border of V2. The present results argue in favor of the hypothesis that the third visual complex in New World monkeys contains different areas in its dorsal and ventral components: area DM, near the dorsal midline, and a homolog of area 19 of other mammals, located more lateral and ventrally. The characteristics of DM suggest that it may correspond to visual area 6 (V6) of Old World monkeys. (C) 2005 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. A disintegrin and metalloproteinase with thrombospondin motifs 1, Adamts-1, is important for the development and function of the kidney. Mice lacking this protein present with renal lesions comprising enlarged calyces, and reduced cortex and medulla layers. Our current findings are consistent with the defect occurring due to a developmental dysgenesis. Methods. We generated Adamts-1 null mice, and further investigated their kidney phenotype in a time course study ranging from E18.5 to 12 months of age. Immunohistochemistry was used to assess the localization of type IV collagen, TGF-beta and F4/80-positive macrophages in the kidneys of Adcants-1 null mice compared to wild-type control animals. The expression of Adamts-1 mRNA was determined in metanephric kidney explants by in situ hybridization. Results. Adamts-1 null mice have a gross kidney defect. At day 18.5 of gestation, the Adcants-1 null kidney has a normal appearance but at birth when the kidney begins to function, the defect becomes evident. During development of the kidney Adamts-1 expression was specifically detected in the developing loops of Henle, as well as in the proximal and distal convoluted tubules. Expression was not detected in the ureter, ureteric bud or its derivatives as had been previously suggested. At 6 months and I year of age, the Adamts-1 null mice displayed interstitial fibrosis in the cortical and medullary regions of the kidney. At I year of age, the Adamts-1 null mice displayed mild interstitial matrix expansion associated with increased collagen type IV expression, without apparent tubular dilatation, compared to wild-type animals. Immunohistochemical analysis demonstrated TGF-beta protein localized to infiltrating macrophages and glomeruli of Adamts-1 null mice. Conclusions. Adamts-1 is required for the normal development of the kidney. The defect observed in its absence results from a dysgenic malformation affecting the medulla that becomes apparent at birth, once the kidneys start to function.